
KIT – University of the State of Baden-Württemberg and
National Laboratory of the Helmholtz Association

 Marcel Kunze, Research Group Cloud Computing

www.kit.edu

Cloud Computing: MapReduce and Hadoop

June 2010

2

Motivation: Large Scale Data Processing

!   MapReduce: Algorithm for large scale parallel data processing
!   Want to process lots of data (> 1 TB)
!   Want to parallelize across hundreds/thousands of CPUs
!   … Want to make this easy

!   Potential fields of application
!   Web indexing
!   Data mining
!   Log file analysis
!   Machine learning
!   Scientific simulation
!   Bioinformatics research

!   Google uses MapReduce everywhere, e.g. to run PageRank

Cloud Computing | M.Kunze

3

Google Search: PageRank Algorithm

!   Find the most popular
page for a specific set of
key words

!   If a user starts at a random
web page and surfs by
clicking links and randomly
entering new URLs, what
is the probability that s/he
will arrive at a given page?

!   The PageRank of a page
captures this notion
!   More “popular” or

“worthwhile” pages get a
higher rank Source: A.Kimball

Cloud Computing | M.Kunze

4

PageRank: Formula

!   Given page A, and pages T1 through Tn linking to A,
PageRank is defined as:

PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

C(P) is the cardinality (out-degree) of page P
d is the damping (“random URL”) factor

Source: A.Kimball

Cloud Computing | M.Kunze

5

PageRank: Intuition

!   Calculation is iterative: PRi+1 is based on PRi

!   Each page distributes its PRi to all pages it links to. Linkees
add up their awarded rank fragments to find their PRi+1

!   d is a tunable parameter (usually = 0.85) encapsulating the
“random jump factor”

PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

Source: A.Kimball

Cloud Computing | M.Kunze

6

PageRank: Iteration

Source: A.Kimball

Cloud Computing | M.Kunze

7

Google File System (GFS)

!   A GFS cluster has one master and many chunkservers
!   Files are divided into 64 MB chunks
!   Chunks are replicated and stored in the Unix file systems of the

chunkservers
!   The master holds metadata
!   Clients get metadata from the master, and data directly from

chunkservers

Cloud Computing | M.Kunze

8

MapReduce

!   Jeffrey Dean and Sanjay Ghemawat
MapReduce: Simplified Data Processing on Large Clusters
OSDI'04: Sixth Symposium on Operating System Design
and Implementation, San Francisco, CA, December, 2004.
see http://labs.google.com/papers/mapreduce.html

!   Google Tutorial at
http://code.google.com/intl/de-DE/edu/submissions/
mapreduce-minilecture/listing.html

Cloud Computing | M.Kunze

9

Functional Programming Review

!   Functional operations do not modify data structures: They
always create new ones

!   Original data still exists in unmodified form
!   Data flows are implicit in program design
!   Order of operations does not matter

!   History: LISP programming

Cloud Computing | M.Kunze

10

Functional Programming Review

fun foo(l: int list) =
 sum(l) + mul(l) + length(l)

 Order of sum() and mul(), etc does not matter – they do
not modify l

Cloud Computing | M.Kunze

11

Map

map f lst: (’a->’b) -> (’a list) -> (’b list)
 Creates a new list by applying f to each element of the

input list; returns output in order.

Cloud Computing | M.Kunze

12

Fold

fold f x0 lst: ('a*'b->'b)->'b->('a list)->'b
 Moves across a list, applying f to each element plus an

accumulator. f returns the next accumulator value, which
is combined with the next element of the list

Cloud Computing | M.Kunze

13

Implicit Parallelism in map

!   In a purely functional setting, elements of a list being
computed by map cannot see the effects of the
computations on other elements

!   If order of application of f to elements in list is
commutative, we can reorder or parallelize execution

!   This is the “secret” that MapReduce exploits

Cloud Computing | M.Kunze

14

MapReduce Programming Model
!   Borrows from functional programming
!   Implements two basic functions:

!   map (in_key, in_value) -> (out_key, intermediate_value) list
!   reduce (out_key, intermediate_value list) -> out_value list

Cloud Computing | M.Kunze

15

Map

!   Records from the data source (lines out of files, rows of a
database, etc) are fed into the map function as key*value
pairs: e.g., (filename, line).

!   map() produces one or more intermediate values along
with an output key from the input.

Cloud Computing | M.Kunze

16

Reduce

!   After the map phase is over, all the intermediate values for
a given output key are combined together into a list

!   reduce() combines those intermediate values into one or
more final values for that same output key

!   (in practice, usually only one final value per key)
Cloud Computing | M.Kunze

17

Parallelism

!   map() functions run in parallel, creating different
intermediate values from different input data sets

!   reduce() functions also run in parallel, each working on a
different output key

!   All values are processed independently
!   Bottleneck: reduce phase can’t start until map phase is

completely finished.

Cloud Computing | M.Kunze

18

MapReduce Parallel Programming Model

!   Bottleneck: All Map processes have to finish before Reduce starts!
Cloud Computing | M.Kunze

19

MapReduce Example

!   Counting words in documents

map(String input_key, String input_value):
// input_key: document name
// input_value: document contents

 for each word w in input_value:
 EmitIntermediate(w, 1);

reduce(String output_key, Iterator<int> intermediate_values):
// output_key: a word
// output_values: a list of counts

 int result = 0;
 for each v in intermediate_values:
 result += v;
 Emit(result);

Cloud Computing | M.Kunze

20

Wordcount Example
!   Hello World Bye World
!   Hello Hadoop Goodbye Hadoop

Hello 1 Hello 2
World 1 World 2
Bye 1 Bye 1
World 1
Hello 1
Hadoop 1 Hadoop 2
Goodbye 1 Goodbye 1
Hadoop 1

MAP REDUCE

Cloud Computing | M.Kunze

21

Programming the Cloud: Hadoop
!   Reproduce the proprietary software infrastructure developed by Google (Started

by Doug Cutting 2004)
!   Hadoop implements

!   Parallel programming model (MapReduce)
!   Hadoop Distributed File System (HDFS)
!   Parallel database (HBase)
!   Programming environment (Pig)
!   Data warehouse infrastructure (HIVE)
!   Data collection and analysis (Chukwa)
!   Machine based learning (Mahout)

!   Largest Cluster at Yahoo!: 32.000 cores and 16 PetaByte storage (1PB/16h)

Cloud Computing | M.Kunze

22

HDFS Architecture

!   Namenode holds meta data (File names, block-ids etc.)
!   Blocks are replicated over data nodes (Default size: 64 MB)

Rack 1 Rack 4

Cloud Computing | M.Kunze

23

MapReduce

!   Map: Generate intermediate Key/Value pairs from input data
map (k,v) -> list (k1,v1)

!   Reduce: Generate output data from intermediate data
 reduce (k1, list(v1)) -> list(v1)

Cloud Computing | M.Kunze

24

Orchestration of MapReduce Tasks

!   Store data in HDFS
!   Job Tracker starts MapReduce Job
!   Assign tasks to task tracker nodes
!   Assemble output files in HDFS

Cloud Computing | M.Kunze

25

Pig

!   Platform for analyzing large data sets
!   High level language to express data analysis programs
!   Parallel infrastructure

!   Pig Latin
!   Ease of programming. It is trivial to achieve parallel execution of

simple, "embarrassingly parallel" data analysis tasks. Complex
tasks comprised of multiple interrelated data transformations are
explicitly encoded as data flow sequences, making them easy to
write, understand, and maintain.

!   Optimization opportunities. The way in which tasks are encoded
permits the system to optimize their execution automatically,
allowing the user to focus on semantics rather than efficiency.

!   Extensibility. Users can create their own functions to do special-
purpose processing.

Cloud Computing | M.Kunze

26

HAMA

!   Scientific simulation and modeling
!   Matrix-vector/matrix-matrix multiply
!   Soving linear systems
!   Scientific graphs

!   Information retrieval
!   Sorting
!   Finding eigenvalues and eigenvectors

!   Computer graphics and computational
geometry
!   Matrix multiply
!   Computing matrix determinate

Hama (means a hippopotamus in Korean) is a distributed matrix computation package.
It is a library of matrix operations for large-scale processing and development environments
as well as a Map/Reduce framework for a large-scale numerical analysis and data mining,
that need the intensive computation power of matrix inversion, e.g., linear regression,
PCA, SVM and etc. It will be useful for many scientific applications, e.g., physics computations,
linear algebra, computational fluid dynamics, statistics, graphic rendering and many more.

Cloud Computing | M.Kunze

27

New Hadoop Cluster at KIT

!   Hadoop
!   480 Nehalem cores
!   128 TB + 256 TB storage
!   OpenCirrus resource
!   Application area:

!   Cloud R&D
!   Bioinformatics

Cloud Computing | M.Kunze

28

!   http://www.cloudera.com/

Cloud Computing | M.Kunze

29

Cloudera

!   Cloudera offers a Hadoop release
!   Free download
!   Enterprise support for Hadoop

!   Tutorials and training videos

!   Cloudera desktop

!   Virtual appliance for VMware Workstation and Fusion
based on Ubuntu Linux

Cloud Computing | M.Kunze

30

Cloudera Desktop

Cloud Computing | M.Kunze

31

Amazon Web Services
http://aws.amazon.com/

Cloud Computing | M.Kunze

32

Amazon Elastic MapReduce

1.  Load data, Map and Reduce executables to S3
2.  Elastic MapReduce starts EC2 Hadoop-Cluster (Master + Slaves)
3.  Hadoop generates Jobflow to distribute S3 data to cluster and to process it
4.  Results are copied over to S3
5.  Message is sent at the end: Retrieve the results from S3 (Browser, wget,…)

Cloud Computing | M.Kunze

33

Management of Virtual Machines in EC2

!   Request queues: Launch jobs, monitor execution or shut down an existing job.
!   Controllers manage and monitor the execution of those requests for jobs.
!   Simple DB: Statistics on execution of the controllers and jobs for reporting purpose
!   Instances are virtual machines that execute jobs
!   HDFS is the default local distributed block-based storage

Cloud Computing | M.Kunze

34

Amazon Elastic MapReduce API

!   RunJobFlow: Creates a job flow request, starts EC2
instances and begins processing.

!   DescribeJobFlows: Provides status of your job flow
request(s).

!   AddJobFlowSteps: Adds additional step to an already
running job flow.

!   TerminateJobFlows: Terminates running job flow and
shutdowns all instances.

Cloud Computing | M.Kunze

35

Amazon Elastic MapReduce Pricing

!   Price in addition to EC2

Cloud Computing | M.Kunze

36

Amazon MapReduce Management Console (1)

Cloud Computing | M.Kunze

37

Amazon MapReduce Management Console (2)

Cloud Computing | M.Kunze

38

Amazon MapReduce Management Console (3)

Cloud Computing | M.Kunze

39

Amazon MapReduce Management Console (4)

Cloud Computing | M.Kunze

40

Amazon MapReduce Management Console (5)

Cloud Computing | M.Kunze

41 Cloud Computing | M.Kunze

Summary
!   MapReduce

!   Useful abstraction to simplify large-scale computations
!   Functional programming paradigm can be applied to large-scale

applications
!   Fun to use: focus on problem, let library deal w/ messy details

!   Hadoop
!   Re-implements Google software infrastructure as OpenSource
!   Ecosystem of useful services to process large data
!   Cloudera offers Hadoop release with enterprise support
!   Amazon Elastic MapReduce Service

42 Cloud Computing | M.Kunze

