
Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

9th Slide Set
Operating Systems

Prof. Dr. Christian Baun

Frankfurt University of Applied Sciences
(1971–2014: Fachhochschule Frankfurt am Main)

Faculty of Computer Science and Engineering
christianbaun@fb2.fra-uas.de

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 1/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Learning Objectives of this Slide Set
At the end of this slide set, you know/understand. . .

what critical sections and race conditions are
what synchronization is

how signaling influences the execution order of the processes
how critical sections can be secured via blocking
what problems (starvation and deadlocks) may arise from blocking
how deadlock detection with matrices works

different options to implement communication between processes:
Shared memory, Message queues, Pipes, Sockets

different options to implement cooperation between processes
how critical sections can be protected via semaphores (and mutex)

Exercise sheet 9 repeats the
contents of this slide set
which are relevant for these
learning objectives

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 2/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Interprocess Communication (IPC)

Processes do not only carry out read and write operations on data, but
also:

call each other
wait for each other
coordinate with each other
In short: They must interact with each other

Important questions regarding interprocess communication (IPC):
How can a process transmit information to others?
How can multiple processes access shared resources?

Question: What is the situation here with threads?
For threads, the same challenges and solutions exist as for interprocess communication with
processes
Only the communication between the threads of a process is no problem because they
operate in the same address space

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 3/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Critical Sections

If multiple processes run in parallel, the processes consist of. . .
Uncritical sections: The processes do not access shared data or only
carry out read operations on shared data
Critical sections: The processes carry out read and write operations on
shared data

Critical sections must not be processed by multiple processes at the same
time

For processes to be able to access a shared memory (=⇒ common
data), the operating system must provide mutual exclusion

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 4/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Critical Sections – Example: Print Spooler

Process X Process Y

next_free_slot = in; (Result: 16)
Process
switch

next_free_slot = in; (Result: 16)
Store record in next_free_slot; (Result: 16)
in = next_free_slot + 1; (Result: 17)

Process
switch

Store record in next_free_slot; (Result: 16)
in = next_free_slot + 1; (Result: 17)

The spooling directory is
consistent

But the entry of process Y
was overwritten by process
X and got lost

Such a situation is called race
condition

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 5/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Race Condition

Unintended race condition of 2 processes, which want to modify the
value of the same record

The result of a process depends on the order or timing of other events
Frequent reason for bugs, which are hard to locate and fix

Problem: The occurrence of the symptoms depends on different events
The symptoms may be different or disappear with each test run

Race conditions can be avoided with the semaphore concept
(=⇒ slide 60)

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 6/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Therac-25: Race Condition with tragic Result (1/2)

Therac-25 is a linear particle
accelerator for the radiation therapy
of cancer tumors
Mid-1980s: In the United States
some accidents happened because of
poor programming and quality
assurance

Some patients got an up to 100
times increased radiation dose

An Investigation of the Therac-25 Accidents. Nancy Leveson, Clark S.
Turner. IEEE Computer, Vol. 26, No. 7, July 1993, S.18-41
http://courses.cs.vt.edu/~cs3604/lib/Therac_25/Therac_1.html

Image source: Google image search.
Frequently shown picture in this context.
(author and license: unknown)

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 7/76

http://courses.cs.vt.edu/~cs3604/lib/Therac_25/Therac_1.html

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Therac-25: Race Condition with tragic Result (2/2)
A race condition (“Texas-Bug”) led to incorrect settings of the device
and consequently to increased radiation doses.

The control process did not synchronize correctly with the user interface
process
The error occurred only during a quick input correction (time window: 8
seconds) by the user
During testing the error did not occur because experience (routine) was
required to operate the device this fast

The Worst Computer Bugs in History: Race conditions in Therac-25:
https://www.bugsnag.com/blog/bug-day-race-condition-therac-25

“Once the data entry phase was marked complete, the magnet setting phase began. However, if a specific sequence of edits was
applied in the Data Entry phase during the 8 second magnet setting phase, the setting was not applied to the machine hardware,
due to the value of the completion variable. The UI would then display the wrong mode to the user, who would confirm the
potentially lethal treatment.”

Other interesting sources

https://www-dssz.informatik.tu-cottbus.de/information/slides_studis/ss2009/mehner_RisikoComputer_zs09.pdf
Killer Bug. Therac-25: Quick-and-Dirty: https://www.viva64.com/en/b/0438/
Killed by a machine: The Therac-25: https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 8/76

https://www.bugsnag.com/blog/bug-day-race-condition-therac-25
https://www-dssz.informatik.tu-cottbus.de/information/slides_studis/ss2009/mehner_RisikoComputer_zs09.pdf
https://www.viva64.com/en/b/0438/
https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Communication vs. Cooperation

Interprocess communication has 2 aspects:
Functional aspect: communication and cooperation
Temporal aspect: synchronization

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 9/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Forms of Interaction

Communication and cooperation are based on synchronization
Synchronization is the most elementary form of interaction

Reason: communication and cooperation need a synchronization between
the interacting partners to obtain correct results

Therefore, we first discuss the synchronization

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 10/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Signaling

One way to synchronize processes

Used to specify an execution order

Example: Section X of process PA must be executed before section Y of
process PB

The signal operation signals that process PA has finished section X
Perhaps, process PB must wait for the signal of process PA

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 11/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Most Simple Form of Signaling (Busy Waiting)

signal(s) wait(s)

set s is s set?

reset s

no

The figure shows busy waiting at the signal variable s
The signal variable can be located in a local file, for example
Drawback: CPU resources are wasted, because the wait operation
occupies the processor at regular intervals

This technique is also called spinlock or polling
Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 12/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Signal and Wait

Better concept: Blocking of process PB until process PA has finished
section X

Advantage: No CPU resources are wasted
Drawback: Only a single process can wait
In literature, this technique is also called passive waiting

One way to specify in Linux an execution
order with passive waiting, is by using the
function sigsuspend. Thereby a process
blocks itself until another process sends it
an appropriate signal (usually SIGUSR1 or
SIGUSR2) with the command kill (or the
system call of the same name) and in this
way signals that it should continue working.

Alternative system calls and function calls
by which a process can block itself until it
is woken up again by a system call are
pause and sleep

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 13/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Securing critical Sections by Locking / Blocking

Signaling always specifies the execution order
But if it is just necessary to ensure that there is no overlap in the
execution of the critical sections, it is possible to use the two operations
lock and unlock

Blocking (locking) prevents the overlapping execution of 2 critical
sections

Example: Critical Sections X of process PA and Y of process PB

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 14/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Locking and Unlocking Processes in Linux (1/2)

Useful system calls and standard library function to call the operations lock and unlock in Linux
sigsuspend, kill, pause and sleep

Alternative 1: Implementation of locking with the signals SIGSTOP
(No. 19) and SIGCONT (No. 18)

With SIGSTOP another process can be stopped
With SIGCONT another process can be reactivated

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 15/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Locking and Unlocking Processes in Linux (2/2)

Alternative 2: A local file serves as a locking mechanism for mutual
exclusion

Each process verifies before entering its critical section whether it can
open the file exclusively

e.g. with the system call open or the standard library function fopen
If this is not the case, it must pause for a certain time (e.g. with the
system call sleep) and then try again (busy waiting).

Alternatively, it can pause itself with sleep or pause and hope that the
process that has already opened the file unblocks it with a signal at the
end of its critical section (passive waiting)

Summary: Difference between Signaling and Blocking

Signaling specifies the execution order
Example: Execute section X of process PA before section Y of PB
Blocking / Locking secures critical sections
The execution order of the critical sections of the processes is not specified! It is just ensured that the execution of critical
sections does not overlap

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 16/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Problems caused by Blocking

Starvation
If a process never removes a lock, the other processes need to wait
infinitely long for the release

Deadlock
If several processes wait for resources, locked by each other, they lock
each other mutually
Because all processes, which are involved in the deadlock, must wait
forever, no one can initiate an event that resolves the situation

Source: https://i.redd.it/vvu6v8pxvue11.jpg
(author and license: unknown)

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 17/76

https://i.redd.it/vvu6v8pxvue11.jpg

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Conditions for Deadlock Occurrence

System Deadlocks. E. G. Coffman, M. J. Elphick, A. Shoshani. Computing Surveys, Vol. 3, No. 2, June 1971, P.67-78
http://people.cs.umass.edu/~mcorner/courses/691J/papers/TS/coffman_deadlocks/coffman_deadlocks.pdf

A deadlock situation can arise if these conditions are all fulfilled
Mutual exclusion

At least 1 resource is occupied by exactly 1 process or is available
=⇒ non-sharable

Hold and wait
A process, which currently occupies at least 1 resource, requests
additional resources which are being held by another process

No preemption
Resources, which are occupied by a process cannot be deallocated by the
operating system, but only released by the holding process voluntarily

Circular wait
A cyclic chain of processes exists
Each process requests a resource that the next process in the chain
occupies.

If one of these conditions is not fulfilled, no deadlock can occur
Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 18/76

http://people.cs.umass.edu/~mcorner/courses/691J/papers/TS/coffman_deadlocks/coffman_deadlocks.pdf

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Resource Graphs
The relations of processes and resources can be visualized using
directed graphs
In this way, deadlocks can also be modeled

The nodes of a resource graph are:
Processes: Are shown as circles
Resources: Are shown as rectangles

An edge from a process to a resource means:
The process is blocked because it waits for the resource

An edge from a resource to a process means:
The process occupies the resource

A good description of resource graphs provides the book Betriebssysteme – Eine Einführung, Uwe Baumgarten, Hans-Jürgen
Siegert, 6th Edition, Oldenbourg Verlag (2007), Chapter 6

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 19/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Deadlock Detection with Matrices

One drawback of deadlock detection with resource graphs is that only
individual resources can be represented with it

If multiple copies (instances) of a resource exist, then graphs are not
suited for the visualization and detection of deadlocks

If multiple copies of a resource exist, a matrix-based algorithm can be
used, which requires 2 vectors and 2 matrices

We specify 2 vectors
Existing resource vector

Indicates the number of existing resources of each class
Available resource vector

Indicates the number of free resources of each class
Additionally 2 matrices are required

Current allocation matrix
Indicates, which resources are currently occupied by the processes

Request matrix
Indicates, which resources the processes would like to occupy

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 20/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Deadlock Detection with Matrices – Example (1/2)

Source of the example: Tanenbaum. Moderne Betriebssysteme. Pearson. 2009

Existing resource vector =
(

4 2 3 1
)

Available resource vector =
(

2 1 0 0
)

4 resources of class 1 exist
2 resources of class 2 exist
3 resources of class 3 exist
1 resource of class 4 exist

2 resources of class 1 are available
1 resource of class 2 is available
No resources of class 3 are available
No resources of class 4 are available

Current allocation matrix =

[
0 0 1 0
2 0 0 1
0 1 2 0

]
Request matrix =

[
2 0 0 1
1 0 1 0
2 1 0 0

]
Process 1 occupies 1 resource of class 3
Process 2 occupies 2 resources of class
1 and 1 resource of class 4
Process 3 occupies 1 resource of class 2
and 2 resources of class 3

Process 1 is blocked, because no free
resources of class 4 exist
Process 2 is blocked, because no free
resources of class 3 exist
Process 3 is not blocked

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 21/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Deadlock Detection with Matrices – Example (2/2)

If process 3 finished execution, it deallocates its resources

Available resource vector =
(

2 2 2 0
)

Request matrix =

[
2 0 0 1
1 0 1 0
− − − −

]
2 resources of class 1 are available
2 resources of class 2 are available
2 resources of class 3 are available
No resources of class 4 are available

Process 1 is blocked, because no free
resources of class 4 exist
Process 2 is not blocked

If process 2 finished execution, it deallocates its resources

Available resource vector =
(

4 2 2 1
)

Request matrix =

[
2 0 0 1
− − − −
− − − −

]
Process 1 is not blocked =⇒ no deadlock in this example

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 22/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Conclusion about Deadlocks

Sometimes it is tolerated that deadlocks can occur
What matters is how important a system is

A deadlock, which statistically occurs every 5 years, is not a problem in a
system, which crashes because of hardware failures or other software
problems one time per week

Deadlock detection is complicated and causes overhead
In all operating systems, deadlocks can occur:

Full process table
No more new processes can be created

Maximum number of inodes are allocated
No new files or directories can be created

The probability that this happens is low, but ̸= 0
Such potential deadlocks are accepted because an occasional deadlock is
not as troublesome as the otherwise necessary restrictions (e.g. only 1
running process, only 1 open file, more overhead)

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 23/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Communication of Processes

Communication
Shared Memory
Message Queues
Pipes
Sockets

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 24/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Shared Memory
Interprocess communication via a shared memory is also called
memory-based communication
Shared memory segments are memory areas, which can be accessed
by multiple processes

These memory areas are located in the address space of multiple
processes

The processes need to coordinate the access operations by themselves
and ensure that their memory requests are mutually exclusive

A receiver process cannot read data from the shared memory, before the
sender process has finished its current write operation
If access operations are not coordinated carefully =⇒ inconsistencies

In all other forms of interprocess communication, the operating system takes care of the
synchronization of the access operations

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 25/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Shared Memory in Linux/UNIX
Linux/UNIX operating systems contain a shared memory table, which
contains information about the existing shared memory segments

This information includes: Start address in memory, size, owner
(username and group) and privileges

A shared memory
segment is always
addressed via its
index number in the
shared memory table

Advantage: A shared memory segment which is not attached to a
process, is not erased by the operating system automatically

When the operating system is rebooted, the shared memory segments and their contents are lost
Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 26/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Working with Shared Memory (System V vs. POSIX)
Linux/UNIX operating systems provide 4 system calls for working with shared memory

shmget(): Create a shared memory segment or access an existing one
shmat(): Attach a shared memory segment to a process
shmdt(): Detach a shared memory segment from a process
shmctl(): Request status information (e.g. privileges) of a shared memory segment, modify or erase it
The command ipcs provides information about existing shared memory segments (System V)

One example of working with shared memory segments in Linux can be found on the website of this course

Some developers prefer the System V API and others the POSIX API. . .

C function calls for for working with POSIX shared memory segments (some defined in the header file mman.h)

shm_open(): Create a shared memory segment or access an existing one
ftruncate(): Specify the size of a shared memory segment
mmap(): Attach a shared memory segment to a process
munmap(): Detach a shared memory segment from a process
close(): Close the descriptor of a shared memory segment
shm_unlink(): Erase a segment
In Linux, POSIX shared memory segments can be found in the /dev/shm directory

One example of working with POSIX shared memory segments in Linux can be found on the website of this course

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 27/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Create a (System V) Shared Memory Segment (in C)
1 # include <sys/ipc.h>
2 # include <sys/shm.h>
3 # include <stdio .h>
4 # define MAXMEMSIZE 20
5
6 int main(int argc , char ** argv) {
7 int shared_memory_id = 12345;
8 int returncode_shmget ;
9

10 // Create shared memory segment or access an existing one
11 // IPC_CREAT = create a shared memory segment , if it does not still exist
12 // 0600 = Access privileges for the new message queue
13 returncode_shmget = shmget (shared_memory_id , MAXMEMSIZE , IPC_CREAT | 0600) ;
14
15 if (returncode_shmget < 0) {
16 printf (" Unable to create the shared memory segment .\n");
17 perror (" shmget ");
18 } else {
19 printf ("The shared memory segment has been created .\n");
20 }
21 }

$ ipcs -m
------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0 x00003039 56393780 bnc 600 20 0

$ printf "%d\n" 0 x00003039 # Convert from hexadecimal to decimal
12345

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 28/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Attach a (System V) Shared Memory Segment (in C)
1 # include <sys/ types .h>
2 # include <sys/ipc.h>
3 # include <sys/shm.h>
4 # include <stdio .h>
5 # define MAXMEMSIZE 20
6
7 int main(int argc , char ** argv) {
8 int shared_memory_id = 12345;
9 int returncode_shmget ;

10 char * sharedmempointer ;
11
12 // Create shared memory segment or access an existing one
13 returncode_shmget = shmget (shared_memory_id , MAXMEMSIZE , IPC_CREAT | 0600) ;
14 ...
15
16 // Attach shared memory segment
17 sharedmempointer = shmat (returncode_shmget , 0, 0);
18 if (sharedmempointer ==(char *) -1) {
19 printf (" Unable to attach the shared memory segment .\n");
20 perror (" shmat ");
21 } else {
22 printf ("The shared memory segment has been attached %p\n", sharedmempointer);
23 }
24 }
25 }

$ ipcs -m
------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0 x00003039 56393780 bnc 600 20 1

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 29/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Write into a (System V) Segment and read from it (in C)
1 # include <sys/ types .h>
2 # include <sys/ipc.h>
3 # include <sys/shm.h>
4 # include <stdio .h>
5 # define MAXMEMSIZE 20
6
7 int main(int argc , char ** argv) {
8 int shared_memory_id = 12345;
9 int returncode_shmget , returncode_shmdt , returncode_sprintf ;

10 char * sharedmempointer ;
11
12 // Create shared memory segment or access an existing one
13 returncode_shmget = shmget (shared_memory_id , MAXMEMSIZE , IPC_CREAT | 0600) ;
14 ...
15 // Attach shared memory segment
16 sharedmempointer = shmat (returncode_shmget , 0, 0);
17 ...
18
19 // Write a string into the shared memory segment
20 returncode_sprintf = sprintf (sharedmempointer , " Hallo Welt.");
21 if (returncode_sprintf < 0) {
22 printf ("The write operation failed .\n");
23 } else {
24 printf ("%i chareacters written into the segment .\n", returncode_sprintf);
25 }
26
27 // Read the string from the shared memory segment
28 if (printf ("%s\n", sharedmempointer) < 0) {
29 printf ("The read operation failed .\n");
30 }
31 ...
Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 30/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Detach a (System V) Shared Memory Segment (in C)
1 # include <sys/ types .h>
2 # include <sys/ipc.h>
3 # include <sys/shm.h>
4 # include <stdio .h>
5 # define MAXMEMSIZE 20
6
7 int main(int argc , char ** argv) {
8 int shared_memory_id = 12345;
9 int returncode_shmget ;

10 int returncode_shmdt ;
11 char * sharedmempointer ;
12
13 // Create shared memory segment or access an existing one
14 returncode_shmget = shmget (shared_memory_id , MAXMEMSIZE , IPC_CREAT | 0600) ;
15 ...
16
17 // Attach the shared memory segment
18 sharedmempointer = shmat (returncode_shmget , 0, 0);
19 ...
20
21 // Detach the shared memory segment
22 returncode_shmdt = shmdt (sharedmempointer);
23 if (returncode_shmdt < 0) {
24 printf (" Unable to detach the shared memory segment .\n");
25 perror (" shmdt ");
26 } else {
27 printf ("The shared memory segment has been detached .\n");
28 }
29 }
30 }

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 31/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Erase a (System V) Shared Memory Segment (in C)

1 # include <sys/ types .h>
2 # include <sys/ipc.h>
3 # include <sys/shm.h>
4 # include <stdio .h>
5 # define MAXMEMSIZE 20
6
7 int main(int argc , char ** argv) {
8 int shared_memory_id = 12345;
9 int returncode_shmget ;

10 int returncode_shmctl ;
11 char * sharedmempointer ;
12
13 // Create shared memory segment or access an existing one
14 returncode_shmget = shmget (shared_memory_id , MAXMEMSIZE , IPC_CREAT | 0600) ;
15 ...
16
17 // Erase shared memory segment
18 returncode_shmctl = shmctl (returncode_shmget , IPC_RMID , 0);
19 if (returncode_shmctl == -1) {
20 printf (" Unable to erase the shared memory segment .\n");
21 perror (" semctl ");
22 } else {
23 printf ("The shared memory segment has been erased .\n");
24 }
25 }
26 }

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 32/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Message Queues

Are linked lists with messages
Operate according to the FIFO principle
Processes can store messages inside and fetch them up from there
Benefit: Even after the termination of the process, which created the
message queue, the data inside the message queue stays available

Linux/UNIX operating systems provide 4 system calls for working with message queues (System V)

msgget(): Create a message queue or access an existing one
msgsnd(): Write message into message queues (=⇒ send operation)
msgrcv(): Read message from message queues (=⇒ receive operation)
msgctl(): Request status information (e.g. privileges) of a message queue, modify or erase it
The command ipcs provides information about existing System V message queues

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 33/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Create (System V) Message Queues (in C)
1 # include <stdlib .h>
2 # include <sys/ types .h>
3 # include <sys/ipc.h>
4 # include <stdio .h>
5 # include <sys/msg.h>
6
7 int main(int argc , char ** argv) {
8 int returncode_msgget ;
9

10 // Create message queue or access an existing one
11 // IPC_CREAT => create a message queue , if it does not still exist
12 // 0600 = Access privileges for the new message queue
13 returncode_msgget = msgget (12345 , IPC_CREAT | 0600) ;
14 if(returncode_msgget < 0) {
15 printf (" Unable to create the message queue .\n");
16 exit (1);
17 } else {
18 printf ("The message queue 12345 with the ID %i has been created .\n",

returncode_msgget);
19 }
20 }

$ ipcs -q
------ Message Queues --------
key msqid owner perms used - bytes messages
0 x00003039 98304 bnc 600 0 0

$ printf "%d\n" 0 x00003039 # Convert from hexadecimal to decimal
12345

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 34/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Write Messages into (System V) Message Queues (in C)
1 # include <stdlib .h>
2 # include <sys/ types .h>
3 # include <sys/ipc.h>
4 # include <stdio .h>
5 # include <sys/msg.h>
6 # include <string .h> // This header file is required for strcpy ()
7
8 struct msgbuf { // Template of a buffer for msgsnd and msgrcv
9 long mtype ; // Message type

10 char mtext [80]; // Send buffer
11 } msg;
12
13 int main(int argc , char ** argv) {
14 int returncode_msgget ;
15
16 // Create message queue or access an existing one
17 returncode_msgget = msgget (12345 , IPC_CREAT | 0600) ;
18 ...
19
20 msg. mtype = 1; // Specifiy the message type
21 strcpy (msg.mtext , " Testnachricht "); // Write the message into the send buffer
22
23 // Write a message into the message queue
24 if (msgsnd (returncode_msgget , &msg , strlen (msg. mtext), 0) == -1) {
25 printf (" Unable to write the message into the message queue .\n");
26 exit (1);
27 }
28 }

The message type (a positive integer value) is specified by the user
Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 35/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Result of writing a Message into a Message Queue

Before. . .
$ ipcs -q
------ Message Queues --------
key msqid owner perms used - bytes messages
0 x00003039 98304 bnc 600 0 0

Afterwards. . .
$ ipcs -q
------ Message Queues --------
key msqid owner perms used - bytes messages
0 x00003039 98304 bnc 600 80 1

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 36/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Pick a Message from a (System V) Message Queue (in C)
1 # include <stdlib .h>
2 # include <sys/ types .h>
3 # include <sys/ipc.h>
4 # include <stdio .h>
5 # include <sys/msg.h>
6 # include <string .h> // This header file is required for strcpy ()
7 struct msgbuf { // Template of a buffer for msgsnd and msgrcv
8 long mtype ; // Message type
9 char mtext [80]; // Send buffer

10 } msg;
11
12 int main(int argc , char ** argv) {
13 int returncode_msgget , returncode_msgrcv ;
14 msg receivebuffer ; // Create a receive buffer
15
16 // Create message queue or access an existing one
17 returncode_msgget = msgget (12345 , IPC_CREAT | 0600)
18
19 msg. mtype = 1; // Pick the first message of type 1
20 // MSG_NOERROR => The message will be truncated when it is too long
21 // IPC_NOWAIT => Do not block the process if no message exists
22 returncode_msgrcv = msgrcv (returncode_msgget , &msg , sizeof (msg. mtext), msg.mtype ,

MSG_NOERROR | IPC_NOWAIT);
23 if (returncode_msgrcv < 0) {
24 printf (" Unable to pick a message from the message queue .\n");
25 perror (" msgrcv ");
26 } else {
27 printf ("This message was picked from the message queue : %s\n", msg. mtext);
28 printf ("The received message is %i characters long .\n", returncode_msgrcv);
29 }
30 }
Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 37/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Erase a (System V) Message Queue (in C)
1 # include <stdlib .h>
2 # include <sys/ types .h>
3 # include <sys/ipc.h>
4 # include <stdio .h>
5 # include <sys/msg.h>
6
7 int main(int argc , char ** argv) {
8 int returncode_msgget ;
9 int returncode_msgctl ;

10
11 // Create message queue or access an existing one
12 returncode_msgget = msgget (12345 , IPC_CREAT | 0600) ;
13 ...
14
15 // Erase message queue
16 returncode_msgctl = msgctl (returncode_msgget , IPC_RMID , 0);
17 if (returncode_msgctl < 0) {
18 printf (" Unable to erase the message queue with the ID %i.\n", returncode_msgget);
19 perror (" msgctl ");
20 exit (1);
21 } else {
22 printf ("The message queue with the ID %i has been erased .\n", returncode_msgget);
23 }
24 exit (0);
25 }

One example of working with System V message queues in Linux can be found on the website of this course

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 38/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Message Queues in Linux (System V vs. POSIX)

The functions described so far for working with message queues are part of the System V
interface
Some developers prefer the System V API and others the POSIX API. . .

C function calls for POSIX message queue specified in the header file mqueue.h

mq_open(): Create a message queue or access an existing one
mq_send(): Write (send) a message into a message queue. Blocking operation
mq_timedsend(): Write (send) a message into a message queue. Blocking operation with a timeout
mq_receive(): Read (receive) a message from a message queue. Blocking operation
mq_timedreceive(): Read (receive) a message from a message queue. Blocking operation with a timeout
mq_getattr(): Request the attributes of a message queue. These are: number of messages in the queue, maximum
message size, maximum number of messages. . .
mq_setattr(): Modify the attributes of a message queue
mq_notify(): Notify the process as soon as a message is available
mq_close(): Close a message queue
mq_unlink(): Erase a message queue
POSIX message queues are created In Linux in the folder /dev/mqueue

One example of working with POSIX message queues in Linux can be found on the website of this course

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 39/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Anonymous Pipes (1/2)
Pipes can be anonymous pipes or named pipes (see slide 44)
An anonymous pipe. . .

is a buffered unidirectional communication channel between 2 processes
If communication in both directions shall be possible at the same time, 2
pipes are necessary – one for each communication direction

operates according to the FIFO principle
has a limited capacity

Pipe = filled =⇒ the writing process gets blocked
Pipe = empty =⇒ the reading process gets blocked

is created with the system call pipe()
During this process, the kernel of the operating system creates an Inode
(=⇒ slide set 6) and 2 file descriptors (handles)
Processes access the access identifiers with read() and write() system
calls (or standard library functions) for reading data from or writing data
into the pipe

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 40/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Anonymous Pipes (2/2)

When child processes are created with fork(), the child processes also
inherit access to the file descriptors
Anonymous pipes allow process communication only between closely
related processes

Only processes, which are closely related via fork() can communicate
with each other via anonymous pipes
If the last process, which has access to an anonymous pipe, terminates,
the pipe gets erased by the operating system

Overview of the pipes in Linux/UNIX: lsof | grep pipe

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 41/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Anonymous Pipe Example (in C) – Part 1/2
You can monitor the anonymous pipe in Linux/UNIX via lsof -n -P | grep <PID> and inside the directory /proc/<PID>/fd

1 # include <stdio .h>
2 # include <unistd .h>
3 # include <stdlib .h>
4
5 void main () {
6 int pid_of_child ;
7 // Create handles for the pipe to read (testpipe [0]) and write (testpipe [1])
8 int testpipe [2];
9

10 // Create anonymous pipe testpipe
11 if (pipe(testpipe) < 0) {
12 printf (" Unable to create the anonymous pipe .\n");
13 // Terminate process
14 exit (1);
15 } else {
16 printf (" Created the anonymous pipe testpipe .\n");
17 }
18
19 // Create a child process
20 pid_of_child = fork ();
21
22 if (pid_of_child < 0) {
23 perror (" Unable to create the child process !\n");
24 // Terminate process
25 exit (1);
26 }

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 42/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Anonymous Pipe Example (in C) – Part 2/2
27 // Parent process
28 if (pid_of_child > 0) {
29 printf (" Parent process : PID: %i\n", getpid ());
30 // Block the read channel of the anonymous pipe testpipe
31 close (testpipe [0]);
32 char message [] = " Testnachricht ";
33 // Write the message into the write channel of the anonymous pipe
34 write (testpipe [1] , &message , sizeof (message));
35 }
36
37 // Child process
38 if (pid_of_child == 0) {
39 printf (" Child process : PID: %i\n", getpid ());
40 // Block the write channel of the anonymous pipe testpipe
41 close (testpipe [1]);
42 // Create a receive buffer (80 bytes capacity)
43 char puffer [80];
44 // Read the message from the read channel of the anonymous pipe
45 read(testpipe [0] , puffer , sizeof (puffer));
46 printf (" Received : %s\n", puffer);
47 }
48 }

$ gcc anonymous_pipe_example .c -o anonymous_pipe_example
$./ anonymous_pipe_example
Created the anonymous pipe testpipe .
Parent process : PID: 394769
Child process : PID: 394770
Received : Testnachricht

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 43/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Named Pipes

Processes, which are not closely related with each other, can
communicate via named pipes

These pipes can be accessed by using their names
They are created in C by: mkfifo("<pathname>",<permissions>)

Any process, which knows the name of a pipe, can use the name to
access the pipe and communicate with other processes

The operating system ensures mutual exclusion
At any time, only a single process can access a pipe

Named pipes are not erased automatically by the operating system
(unlike anonymous pipes)

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 44/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Named Pipe Example (in C) – Part 1/4
1 # include <stdio .h>
2 # include <unistd .h>
3 # include <stdlib .h>
4 # include <fcntl .h>
5 # include <sys/stat.h>
6
7 void main () {
8 int pid_of_child ;
9

10 // Create named pipe
11 if (mkfifo (" testfifo " ,0666) < 0) {
12 printf (" Unable to create the named pipe .\n");
13 exit (1);
14 } else {
15 printf (" Created the named pipe testfifo .\n");
16 }
17
18 // Create a child process
19 pid_of_child = fork ();
20
21 if (pid_of_child < 0) {
22 perror (" Unable to create the child process !\n");
23 exit (1);
24 }

The function call creates a file system entry named testfifo in the current directory. The first letter in the output of the ls
command shows that testfifo is a named pipe. The permissions are rw-r--r-- because umask is 022.
$ ls -la testfifo
prw-r--r-- 1 bnc bnc 0 1. Feb 10:15 testfifo

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 45/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Named Pipe Example (in C) – Part 2/4

25 // Parent process
26 if (pid_of_child > 0) {
27 printf (" Parent process : PID: %i\n", getpid ());
28
29 // Create the file descriptor (handle) for the pipe
30 int fd;
31
32 // Specify the message to be transferred
33 char message [] = " Testnachricht ";
34
35 // Open the named pipe for writing
36 fd = open(" testfifo ", O_WRONLY);
37
38 // Write the message into the pipe
39 write (fd , &message , sizeof (message));
40
41 // Close the named pipe
42 close (fd);
43 }

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 46/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Named Pipe Example (in C) – Part 3/4
44 // Child process
45 if (pid_of_child == 0) {
46 printf (" Child process : PID: %i\n", getpid ());
47
48 // Create the file descriptor (handle) for the pipe
49 int fd;
50 // Create a receive buffer
51 char puffer [80];
52
53 // Open the named pipe for reading
54 fd = open(" testfifo ", O_RDONLY);
55
56 // Read the message from the pipe
57 read(fd , puffer , sizeof (puffer));
58 printf (" Received : %s\n", puffer);
59
60 // Close the named pipe
61 close (fd);
62
63 // Erase the named pipe
64 if (unlink (" testfifo ") < 0) {
65 printf (" Unable to erase the named pipe .\n");
66 exit (1);
67 } else {
68 printf ("The named pipe has been erased .\n");
69 }
70 }
71 }

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 47/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Named Pipe Example (in C) – Part 4/4

$ gcc named_pipe_example .c -o named_pipe_example
$./ named_pipe_example
Created the named pipe testfifo .
Parent process : PID: 395415
Child process : PID: 395416
Received : Testnachricht
The named pipe has been erased .

You can monitor the named pipe in Linux/UNIX via lsof -n -P | grep <PID> and inside the directory /proc/<PID>/fd

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 48/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Sockets
Full duplex-ready alternative to pipes and shared memory

Allow interprocess communication in distributed systems
A user process can request a socket from the operating system and
afterwards send and receive data via the socket

The operating system maintains all used sockets and the related
connection information

Ports are used for the communication via sockets
Port numbers are randomly assigned during connection establishment
Port numbers are assigned randomly by the operating system

Exceptions are port numbers of well-known applications, such as HTTP
(80) SMTP (25), Telnet (23), SSH (22), FTP (21),. . .

Sockets can be used in a blocking (synchronous) and non-blocking
(asynchronous) way

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 49/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Different Types of Sockets

Connectionless sockets (= datagram sockets)
Use the Transport Layer protocol UDP
Advantage: Better data rate as with TCP

Reason: Lesser overhead for the protocol
Drawback: Segments may arrive in wrong sequence or may get lost

Connection-oriented sockets (= stream sockets)
Use the Transport Layer protocol TCP
Advantage: Better reliability

Segments cannot get lost
Segments always arrive in the correct sequence

Drawback: Lower data rate as with UDP
Reason: More overhead for the protocol

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 50/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Using Sockets

Almost all major operating systems support sockets
Advantage: Better portability of applications

Functions for communication via sockets:
Creating a socket:
socket()
Binding a socket to a port number and making it ready to receive data:
bind(), listen(), accept() and connect()
Sending/receiving messages via the socket:
send(), sendto(), recv() and recvfrom()
Closing a socket:
shutdown() or close()

Overview of the sockets in Linux/UNIX: netstat -n or lsof | grep socket

Examples of interprocess communication via sockets (TCP and UDP) in Linux can be found on the website of this course

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 51/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Connectionless Communication via Sockets – UDP

Client
Create socket (socket)
Send (sendto) and receive data (recvfrom)
Close socket (close)

Server
Create socket (socket)
Bind socket to a port (bind)
Send (sendto) and receive data (recvfrom)
Close socket (close)

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 52/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Connection-oriented Communication via Sockets – TCP
Client

Create socket (socket)
Connect client with server socket (connect)
Send (send) and receive data (recv)
Close socket (close)

Server
Create socket (socket)
Bind socket to a port (bind)
Make socket ready to receive (listen)

Set up a queue for connection requests.
Specifies the number of connection requests,
which can be stored in the queue

Server accepts connections (accept)
Fetch the first connection request from the
queue

Send (send) and receive data (recv)
Close socket (close)

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 53/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Sockets via UDP – Example (Server)
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <sys/socket.h>
5 #include <netinet/in.h>
6 #include <unistd.h>
7 #include <arpa/inet.h>
8
9 int main(int argc, char *argv[]) {

10 int sd, adresse_laenge;
11 char puffer[1024] = { 0 };
12 struct sockaddr_in adresse, client_adresse;
13 memset(&adresse, 0, sizeof(adresse));
14 memset(&client_adresse, 0, sizeof(client_adresse));
15 adresse.sin_family = AF_INET;
16 adresse.sin_addr.s_addr = INADDR_ANY;
17 adresse.sin_port = htons(atoi(argv[1]));
18
19 sd = socket(AF_INET, SOCK_DGRAM, 0);
20 bind(sd, (struct sockaddr *) &adresse, sizeof(adresse));
21 adresse_laenge = sizeof(client_adresse);
22 recvfrom(sd, (char *)puffer, sizeof(puffer), 0,
23 (struct sockaddr *) &client_adresse, &adresse_laenge);
24 printf("Empfangene Nachricht: %s\n",puffer);
25 char antwort[]="Server: Nachricht empfangen.\n";
26 sendto(sd, (const char *)antwort, sizeof(antwort), 0,
27 (struct sockaddr *) &client_adresse, adresse_laenge);
28 close(sd);
29 exit(0);
30 }

$ gcc udp_server.c -o udp_server
$./udp_server 50002

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 54/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Sockets via UDP – Example (Client)
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <sys/socket.h>
5 #include <netinet/in.h>
6 #include <unistd.h>
7 #include <arpa/inet.h>
8
9 int main(int argc, char *argv[]) {

10 int sd, adresse_laenge;
11 char puffer[1024] = { 0 };
12 struct sockaddr_in adresse;
13 memset(&adresse, 0, sizeof(adresse));
14 adresse.sin_family = AF_INET;
15 adresse.sin_port = htons(atoi(argv[2]));
16 adresse.sin_addr.s_addr = inet_addr(argv[1]);
17
18 sd = socket(AF_INET, SOCK_DGRAM, 0);
19 printf("Bitte Nachricht eingeben: ");
20 fgets(puffer, sizeof(puffer), stdin);
21 adresse_laenge = sizeof(adresse);
22 sendto(sd, (const char *)puffer, strlen(puffer), 0,
23 (struct sockaddr *) &adresse, adresse_laenge);
24 memset(puffer, 0, sizeof(puffer));
25 recvfrom(sd, (char *)puffer, sizeof(puffer), 0,
26 (struct sockaddr *) &adresse, &adresse_laenge);
27 printf("%s\n",puffer);
28 close(sd);
29 exit(0);
30 }

$ gcc udp_client.c -o udp_client
$./udp_client 127.0.0.1 50002
Bitte Nachricht eingeben: Test
Server: Nachricht empfangen.

$./udp_server 50002
Empfangene Nachricht: Test

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 55/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Sockets via TCP – Example (Server)
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <sys/socket.h>
5 #include <netinet/in.h>
6 #include <unistd.h>
7 #include <arpa/inet.h>
8
9 int main(int argc, char *argv[]) {

10 int sd, fd, adresse_laenge;
11 char puffer[1024] = { 0 };
12 struct sockaddr_in adresse;
13 memset(&adresse, 0, sizeof(adresse));
14 adresse.sin_family = AF_INET;
15 adresse.sin_addr.s_addr = INADDR_ANY;
16 adresse.sin_port = htons(atoi(argv[1]));
17
18 sd = socket(AF_INET, SOCK_STREAM, 0);
19 bind(sd, (struct sockaddr *) &adresse, sizeof(adresse));
20 listen(sd, 5);
21 adresse_laenge = sizeof(adresse);
22 fd = accept(sd, (struct sockaddr *) &adresse, &adresse_laenge);
23 read(fd, puffer, sizeof(puffer));
24 printf("Empfangene Nachricht: %s\n",puffer);
25 char antwort[]="Server: Nachricht empfangen.\n";
26 write(fd, antwort, sizeof(antwort));
27 close(fd);
28 close(sd);
29 exit(0);
30 }

$ gcc tcp_server.c -o tcp_server
$./tcp_server 50003

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 56/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Sockets via TCP – Example (Client)
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <sys/socket.h>
5 #include <netinet/in.h>
6 #include <unistd.h>
7 #include <arpa/inet.h>
8
9 int main(int argc, char *argv[]) {

10 int sd;
11 char puffer[1024] = { 0 };
12 struct sockaddr_in adresse;
13 memset(&adresse, 0, sizeof(adresse));
14 adresse.sin_family = AF_INET;
15 adresse.sin_port = htons(atoi(argv[2]));
16 adresse.sin_addr.s_addr = inet_addr(argv[1]);
17
18 sd = socket(AF_INET, SOCK_STREAM, 0);
19 connect(sd, (struct sockaddr *) &adresse, sizeof(adresse));
20
21 printf("Bitte Nachricht eingeben: ");
22 fgets(puffer, sizeof(puffer), stdin);
23 write(sd, puffer, strlen(puffer));
24 memset(puffer, 0, sizeof(puffer));
25 read(sd, puffer, sizeof(puffer));
26 printf("%s\n",puffer);
27
28 close(sd);
29 exit(0);
30 }

$ gcc tcp_client.c -o tcp_client
$./tcp_client 127.0.0.1 50003
Bitte Nachricht eingeben: Test
Server: Nachricht empfangen.

$./tcp_server 50003
Empfangene Nachricht: Test

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 57/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Comparison of Communication Systems

Shared Message Anonymous Named SocketsMemory Queues Pipes Pipes
Memory- or Message-based communication Memory Message Message Message Message
Bidirectional yes yes no no yes
Processes must be related with each other no no yes no no
Communication over system boundaries no no no no yes
Remain intact without a bound process yes yes no yes no
Automatic synchronization of accesses no yes yes yes yes

Advantages of message-based communication versus memory-based
communication:

The operating system takes care of the synchronization of accesses =⇒
comfortable
Can be used in distributed systems without a shared memory
Better portability of applications

Storage can be integrated via network connections

e.g. by using a protocol like the Network File System (NFS) or Server Message Block (SMB)
This allows memory-based communication between processes on different independent systems
The problem of synchronizing the accesses also exists here

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 58/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Cooperation

Cooperation
Semaphore
Mutex

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 59/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Semaphore

In order to protect (lock) critical sections, not only the already
discussed locks can be used, but also semaphores
1965: Published by Edsger W. Dijkstra
A semaphore is a counter lock S with operations P(S) and V(S)

V comes from the Dutch verhogen = raise
P comes from the Dutch proberen = try (to reduce)

The access operations are atomic =⇒ cannot be interrupted
(indivisible)
May allow multiple processes accessing the critical section

In contrast to semaphores, locks (=⇒ slide 14) can only be used to allow
a single process to enter the critical section at the same time

Cooperating sequential processes. Edsger W. Dijkstra (1965)

https://www.cs.utexas.edu/~EWD/ewd01xx/EWD123.PDF

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 60/76

https://www.cs.utexas.edu/~EWD/ewd01xx/EWD123.PDF

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Semaphore Access Operations (1/3)

A Semaphore consists of 2 Data Structures
COUNT: An integer, non-negative counter variable.
Specifies how many processes can pass the semaphore now without getting blocked
A waiting room for the processes, which wait until they are allowed to pass the semaphore
The processes are in blocked state until they are transferred into ready state by the
operating system when the semaphore allows access to the critical section

Initialization: First, a new semaphore is created or an existing one is
opened

For a new semaphore, the counter variable is initialized at the beginning
with a non-negative initial value

1 // apply the INIT operation on semaphore SEM
2 SEM.INIT(unsigned int init_value) {
3
4 // initialize the variable COUNT of Semaphor SEM
5 // with a non - negative initial value
6 SEM. COUNT = init_value ;
7 }

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 61/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Semaphore Access Operations (2/3) Image Source: Carsten Vogt

P operation (reduce): It checks the value of the counter variable
If the value is 0, the process becomes blocked
If the value > 0, it is reduced by 1

1 SEM.P() {
2 // if the counter variable = 0, the process becomes blocked
3 if (SEM. COUNT == 0)
4 < block >
5
6 // if the counter variable is > 0, the counter variable
7 // is decremented immediately by 1
8 SEM. COUNT = SEM. COUNT - 1;
9 }

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 62/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Semaphore Access Operations (3/3) Image Source: Carsten Vogt

V operation (raise): It first increases the counter variable by value 1
If processes are in the waiting room, one process gets unblocked
The process, which just got unblocked, continues its P operation and first
reduces the counter variable

1 SEM.V() {
2 // counter variable = counter variable + 1
3 SEM. COUNT = SEM. COUNT + 1;
4
5 // if processes are in the waiting room , one gets unblocked
6 if (< SEM waiting room is not empty >)
7 < unblock a waiting process >
8 }

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 63/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Producer/Consumer Example (1/3)

A producer sends data to a consumer
A buffer with limited capacity is used to minimize the waiting times of
the consumer
Data is placed into the buffer by the producer and the consumer
removes data from the buffer
Mutual exclusion is mandatory in order to avoid inconsistencies
Buffer = full =⇒ producer must be blocked
Buffer = empty =⇒ consumer must be blocked

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 64/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Source: Kenneth Baclawski (Northeastern University in Boston), Image source: Michael Vigneau (license: unknown)
http://www.ccs.neu.edu/home/kenb/tutorial/example.gif

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 65/76

http://www.ccs.neu.edu/home/kenb/tutorial/example.gif

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Producer/Consumer Example (2/3)
3 semaphores are used to synchronize access to the buffer

empty
filled
mutex

The semaphores filled and empty are used in opposite to each other
empty counts the number of empty locations in the buffer and its value is
reduced by the producer (P operation) and raised by the consumer (V
operation)

empty = 0 =⇒ buffer is completely filled =⇒ producer is blocked
filled counts the number of data packets (occupied locations) in the
buffer and its value is raised by the producer (V operation) and reduced
by the consumer (P operation)

filled = 0 =⇒ buffer is empty =⇒ consumer is blocked
The semaphore mutex is used to ensure for the mutual exclusion

Binary Semaphores

Binary semaphores are initialized with value 1 and ensure that 2 or more processes cannot simultaneously enter their
critical sections
Example: The semaphore mutex from the producer/consumer example

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 66/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Producer/Consumer Example (3/3)
1 typedef int semaphore ; // semaphores are of type integer
2 semaphore filled = 0; // counts the number of occupied locations in the buffer
3 semaphore empty = 8; // counts the number of empty locations in the buffer
4 semaphore mutex = 1; // controls access to the critial sections
5
6 void producer (void) {
7 int data;
8
9 while (TRUE) { // infinite loop

10 createDatapacket (data); // create data packet
11 P(empty); // decrement the empty locations counter
12 P(mutex); // enter the critical section
13 insertDatapacket (data); // write data packet into the buffer
14 V(mutex); // leave the critical section
15 V(filled); // increment the occupied locations counter
16 }
17 }
18
19 void consumer (void) {
20 int data;
21
22 while (TRUE) { // infinite loop
23 P(filled); // decrement the occupied locations counter
24 P(mutex); // enter the critical section
25 removeDatapacket (data); // pick data packet from the buffer
26 V(mutex); // leave the critical section
27 V(empty); // increment the empty locations counter
28 consumeDatapacket (data); // consume data packet
29 }
30 }

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 67/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Semaphores in Linux (System V) Image Source: Carsten Vogt

The semaphore concept of Linux differs from the Dijkstra concept
The counter variable can be incremented or decremented with a P or V
operation by more than value 1
Multiple access operations on different semaphores can be carried out in
an atomic way, which means that they are indivisible

Linux systems maintain a
semaphore table, which contains
references to arrays of semaphores

Individual semaphores are
addressed using the table index
and the position in the group

Linux/UNIX operating systems provide 3 system calls for working with System V semaphores

semget(): Create new semaphore or a group of semaphores or open an existing semaphore
semctl(): Request or modify the value of an existing semaphore or of a semaphore group or erase a semaphore
semop(): Carry out P and V operations on semaphores
Information about existing semaphores (System V) provides the command ipcs

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 68/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Simple Semaphore Example (in C) – Part 1/5
This program creates a child process. The parent process and the child process both try to print characters in the command line
interface (critical section). Each process may print only one character at a time. Two semaphores are used to ensure mutual exclusion

1 #include <stdio.h> // für printf
2 #include <stdlib.h> // für exit
3 #include <unistd.h> // für read, write, close
4 #include <sys/wait.h> // für wait
5 #include <sys/sem.h> // für semget, semctl, semop
6
7 void main() {
8 int pid_des_kindes;
9 int sem_key1=12345;

10 int sem_key2=54321;
11 int returncode_semget1, returncode_semget2, returncode_semctl;
12 int output;
13
14 setbuf(stdout, NULL); // Das Puffern Standardausgabe (stdout) unterbinden
15
16 // Neue Semaphorgruppe 12345 mit einer Semaphore erstellen
17 // IPC_CREAT = Semaphore erzeugen, wenn Sie noch nicht existiert
18 // IPC_EXCL = Neuen Semaphorgruppe anlegen und nicht auf evtl. existierende Gruppe zugreifen
19 returncode_semget1 = semget(sem_key1, 1, IPC_CREAT | IPC_EXCL | 0600);
20 if (returncode_semget1 < 0) {
21 printf("Die Semaphorgruppe %i konnte nicht erstellt werden.\n", sem_key1);
22 perror("semget");
23 exit(1);
24 }

Helpful documentation of semget

https://www.nt.th-koeln.de/fachgebiete/inf/diplom/semwork/unix/semget/semget.html

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 69/76

https://www.nt.th-koeln.de/fachgebiete/inf/diplom/semwork/unix/semget/semget.html

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Simple Semaphore Example (in C) – Part 2/5
25 // Neue Semaphorgruppe 54321 mit einer Semaphore erstellen
26 returncode_semget2 = semget(sem_key2, 1, IPC_CREAT | IPC_EXCL | 0600);
27 if (returncode_semget2 < 0) {
28 printf("Die Semaphorgruppe %i konnte nicht erstellt werden.\n", sem_key2);
29 perror("semget");
30 exit(1);
31 }
32
33 // P-Operation definieren. Wert der Semaphore um eins dekrementieren
34 struct sembuf p_operation = {0, -1, 0};
35
36 // V-Operation definieren. Wert der Semaphore um eins inkrementieren
37 struct sembuf v_operation = {0, 1, 0};
38
39 // Erste Semaphore der Semaphorgruppe 12345 initial auf Wert 1 setzen
40 returncode_semctl = semctl(returncode_semget1, 0, SETVAL, 1);
41
42 // Erste Semaphore der Semaphorgruppe 54321 initial auf Wert 0 setzen
43 returncode_semctl = semctl(returncode_semget2, 0, SETVAL, 0);
44
45 // Initialen Wert der ersten Semaphore der Semaphorgruppe 12345 zur Kontrolle ausgeben
46 output = semctl(returncode_semget1, 0, GETVAL, 0);
47 printf("Wert der Semaphore mit ID %i und Key %i: %i\n", returncode_semget1, sem_key1, output);
48
49 // Initialen Wert der ersten Semaphore der Semaphorgruppe 54321 zur Kontrolle ausgeben
50 output = semctl(returncode_semget2, 0, GETVAL, 0);
51 printf("Wert der Semaphore mit ID %i und Key %i: %i\n", returncode_semget2, sem_key2, output);

Helpful documentation of semctl

https://www.nt.th-koeln.de/fachgebiete/inf/diplom/semwork/unix/semctl/semctl.html

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 70/76

https://www.nt.th-koeln.de/fachgebiete/inf/diplom/semwork/unix/semctl/semctl.html

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Simple Semaphore Example (in C) – Part 3/5
52 // Einen Kindprozess erzeugen
53 pid_des_kindes = fork();
54
55 // Kindprozess
56 if (pid_des_kindes == 0) {
57 for (int i=0;i<5;i++) {
58 semop(returncode_semget2, &p_operation, 1); // P-Operation Semaphore 54321
59 // Kritischer Abschnitt (Anfang)
60 printf("B");
61 sleep(1);
62 // Kritischer Abschnitt (Ende)
63 semop(returncode_semget1, &v_operation, 1); // V-Operation Semaphore 12345
64 }
65 exit(0);
66 }
67
68 // Elternprozess
69 if (pid_des_kindes > 0) {
70 for (int i=0;i<5;i++) {
71 semop(returncode_semget1, &p_operation, 1); // P-Operation Semaphore 12345
72 // Kritischer Abschnitt (Anfang)
73 printf("A");
74 sleep(1);
75 // Kritischer Abschnitt (Ende)
76 semop(returncode_semget2, &v_operation, 1); // V-Operation Semaphore 54321
77 }
78 }

Helpful documentation of semop

https://www.nt.th-koeln.de/fachgebiete/inf/diplom/semwork/unix/semop/semop.html

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 71/76

https://www.nt.th-koeln.de/fachgebiete/inf/diplom/semwork/unix/semop/semop.html

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Simple Semaphore Example (in C) – Part 4/5
79 // Warten auf die Beendigung des Kindprozesses
80 wait(NULL);
81
82 printf("\n");
83
84 // Semaphorgruppe 12345 entfernen
85 returncode_semctl = semctl(returncode_semget1, 0, IPC_RMID, 0);
86 if (returncode_semctl < 0) {
87 printf("Die Semaphorgruppe %i konnte nicht entfernt werden.\n", returncode_semget1);
88 exit(1);
89 } else {
90 printf("Die Semaphorgruppe mit ID %i und Key %i wurde entfernt.\n", returncode_semget1, sem_key1);
91 }
92
93 // Semaphorgruppe 54321 entfernen
94 returncode_semctl = semctl(returncode_semget2, 0, IPC_RMID, 0);
95 if (returncode_semctl < 0) {
96 printf("Die Semaphorgruppe %i konnte nicht entfernt werden.\n", returncode_semget2);
97 exit(1);
98 } else {
99 printf("Die Semaphorgruppe mit ID %i und Key %i wurde entfernt.\n", returncode_semget2, sem_key2);

100 }
101
102 exit(0);
103 }

One example of working with semaphores in Linux can be found on the website of this course

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 72/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Simple Semaphore Example (in C) – Part 5/5
$ gcc semaphore_beispiel_systemv .c -o semaphore_beispiel_systemv
$./ semaphore_beispiel_systemv
Wert der Semaphore mit ID 98362 und Key 12345: 1
Wert der Semaphore mit ID 98363 und Key 54321: 0
ABABABABAB
Die Semaphorgruppe mit ID 98362 und Key 12345 wurde entfernt .
Die Semaphorgruppe mit ID 98363 und Key 54321 wurde entfernt .

$ ipcs -s

------ Semaphore Arrays --------
key semid owner perms nsems
0 x00003039 98362 bnc 600 1
0 x0000d431 98363 bnc 600 1

$ printf "%d\n" 0 x00003039 # Convert from hexadecimal to decimal
12345
$ printf "%d\n" 0 x0000d431
54321

Without mutual exclusion by using the semaphores, the output
sequence can be e.g. ABBABABABA or ABBAABABAB or ABABABABBA . . .
Without mutual exclusion by using the semaphores and without the
sleep commands, the output sequence is usually AAAAABBBBB and in
rather seldom cases like AABAAABBBB

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 73/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Semaphores in Linux (System V vs. POSIX)

The concept of protecting critical sections described so far is also called
System V semaphores in the literature
Some developers prefer the System V API and others the POSIX
API. . .

C function calls of the POSIX semaphores specified in the header file semaphore.h

sem_init(): Create a new unnamed semaphore and thereby specify the initial value
sem_open(): Create a new named semaphore and thereby specify the initial value
sem_post(): Increment the value of a semaphore (V operation)
sem_wait(): Decrement the value of a semaphore (P operation). Blocking operation
sem_trywait(): Decrement the value of a semaphore (P operation). Non-blocking operation
sem_timedwait(): Decrement the value of a semaphore (P operation). Blocking operation but with a timeout
sem_getvalue(): Request the value of a semaphore
sem_destroy(): Erase an unnamed semaphore
sem_close(): Close a named semaphore
sem_unlink(): Erase a named semaphore
Named POSIX semaphores are created in Linux in the folder /dev/shm with names of the form sem.<name>

One example of working of working with named POSIX semaphores in Linux can be found on the website of this course

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 74/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Mutexes
If the semaphore feature of counting is not required, a simplified
alternative, the mutex can be used instead

Mutexes (derived from Mutual Exclusion) are used to protect critical
sections, which are allowed to be accessed by only a single process at
any given moment

Mutexes can only have 2 states: occupied and not occupied
Mutexes have the same functionality as binary semaphores

Several implementations of the mutex concept exist

C standard library: mtx_init, mtx_unlock (“V operation”), mtx_lock (“P operation”), mtx_trylock, mtx_timedlock,
mtx_destroy

POSIX threads: pthread_mutex_init, pthread_mutex_unlock, pthread_mutex_lock, pthread_mutex_trylock,
pthread_mutex_timedlock, pthread_mutex_destroy

C standard library (Sun/Oracle Solaris): mutex_init, mutex_unlock, mutex_lock, mutex_trylock, mutex_destroy

Focus: Cooperation of threads of a process (intra-process
synchronization)

Cooperation of processes (inter-process synchronization) is not always
possible and if so, then via a shared memory segment (System V or
POSIX)

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 75/76

Process Interaction Synchronization of Processes Communication of Processes Cooperation of Processes

Monitor and erase IPC Objects

Information about existing (System V) shared memory segments,
(System V) message queues and (System V) semaphores is provided
by the command ipcs

The easiest way to erase such shared memory segments, message
queues and semaphores from the command line is the command ipcrm

ipcrm [-m shmid] [-q msqid] [-s semid]
[-M shmkey] [-Q msgkey] [-S semkey]

POSIX memory segments and POSIX semaphores can be inspected
and manually erased in the directory /dev/shm

POSIX message queues can be inspected and manually erased in the
directory /dev/mqueue

Prof. Dr. Christian Baun – 9th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 76/76

	Process Interaction
	Interprocess Communication
	Critical Sections
	Race Condition
	Communication vs. Cooperation

	Synchronization of Processes
	Signaling
	Busy Waiting
	Signal and Wait
	Securing critical Sections by Locking / Blocking
	Starvation and Deadlock
	Conditions for Deadlock Occurrence
	Resource Graphs
	Deadlock Detection with Matrices
	Conclusion about Deadlocks

	Communication of Processes
	Shared Memory
	Message Queues
	Message Queues in Linux (SystemV vs. POSIX)
	Pipes
	Sockets
	Connectionless Communication via Sockets
	Connection-oriented Communication via Sockets

	Cooperation of Processes
	Semaphore
	Semaphore Access Operations
	Producer/Consumer Example
	Semaphores in Linux (System V)
	Semaphores in Linux (SystemV vs. POSIX)
	Mutexes
	Monitor and erase IPC Objects

