
Process Switching Scheduling Methods (Algorithms)

8th Slide Set
Operating Systems

Prof. Dr. Christian Baun

Frankfurt University of Applied Sciences
(1971–2014: Fachhochschule Frankfurt am Main)

Faculty of Computer Science and Engineering
christianbaun@fb2.fra-uas.de

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 1/31



Process Switching Scheduling Methods (Algorithms)

Learning Objectives of this Slide Set

At the end of this slide set, you know/understand. . .
what steps the dispatcher carries out for switching between processes
what scheduling is

how preemptive scheduling and non-preemptive scheduling work
the functioning of several common scheduling methods
how scheduling in modern operating systems works in detail

In SS2019 I erased all scheduling algorithms (SJF/SRTF/LJF/LRTF/HRRN) from my course material that require knowing how
long it takes for each process until its termination. In other words, these algorithms need to know how long is the execution time of
each process. In practice, this is almost never the case (=⇒ unrealistic)

Exercise sheet 8 repeats the
contents of this slide set
which are relevant for these
learning objectives

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 2/31



Process Switching Scheduling Methods (Algorithms)

Process Switching – The Dispatcher (1/2)

Tasks of multitasking operating systems are among others:
Dispatching: Switching of the CPU during a process switch
Scheduling: Determination of the point in time when the process switch
occurs and of the execution order of the processes

The dispatcher carries out the state transitions of the processes

We already know. . .

During process switching, the dispatcher removes the CPU from the running process and assigns it to the process, which is
the first one in the queue
For transitions between the states ready and blocked, the dispatcher removes the corresponding process control blocks
from the status lists and accordingly inserts them new
Transitions from or to the state running always imply a switch of the process, which is currently executed by the CPU

If a process switches into the state running or from the state running to another state, the dispatcher needs to. . .

back up the context (register contents) of the executed process in the process control block
assign the CPU to another process
import the context (register contents) of the process, which will be executed next, from its process control block

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 3/31



Process Switching Scheduling Methods (Algorithms)

Process Switching – The Dispatcher (2/2)
The system idle process

Windows operating systems since Windows
NT ensure that the CPU is assigned to a
process at any time
If no process is in the state ready, the
system idle process gets the CPU assigned
The system idle process is always active and
has the lowest priority
Due to the system idle process, the scheduler
must never consider the case that no active
process exists
Since Windows 2000, the system idle process
puts the CPU into a power-saving mode
For each CPU core (in hyperthreading
systems for each logical CPU), exists a
system idle process

https://unix.stackexchange.com/questions/361245/what-does-an-idle-cpu-process-do

“In Linux, one idle task is created for every CPU and locked to that processor; whenever there’s no other process to run on that
CPU, the idle task is scheduled. Time spent in the idle tasks appears as “idle” time in tools such as top. . . ”

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 4/31

https://unix.stackexchange.com/questions/361245/what-does-an-idle-cpu-process-do


Process Switching Scheduling Methods (Algorithms)

Scheduling Criteria and Scheduling Strategies

During scheduling, the operating system specifies the execution order of
the processes in the state ready
No scheduling strategy. . .

is optimally suited for each system
can take all scheduling criteria optimally into account

Scheduling criteria are among others CPU load, response time (latency),
turnaround time, throughput, efficiency, real-time behavior (compliance
with deadlines), waiting time, overhead, fairness, consideration of
priorities, even resource utilization. . .

When choosing a scheduling strategy, a compromise between the
scheduling criteria must always be found

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 5/31



Process Switching Scheduling Methods (Algorithms)

Non-preemptive and preemptive Scheduling
2 classes of scheduling strategies exist

Non-preemptive scheduling or cooperative scheduling
A process, which gets the CPU assigned by the scheduler, remains in
control over the CPU until its execution is finished or it voluntarily gives
the control back on a voluntary basis
Problematic: A process may occupy the CPU for as long as it wants

Examples: Windows 3.x, MacOS 8/9, Windows 95/98/Me (for 16-Bit processes)

Preemptive scheduling
The CPU may be removed from a process before its execution is
completed
If the CPU is removed from a process, it is paused until the scheduler
again assigns the CPU to it
Drawback: Higher overhead compared with non-preemptive scheduling
The benefits of preemptive scheduling, especially the consideration of
process priorities, outweigh the drawbacks

Examples: Linux, MacOS X, Windows 95/98/Me (for 32-Bit processes), Windows NT (incl. XP/Visa/7/8/10/11), FreeBSD

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 6/31



Process Switching Scheduling Methods (Algorithms)

Impact on the overall Performance of a Computer

This example demonstrates the impact of the scheduling method used
on the overall performance of a computer

The processes PA and PB are to be executed one after the other

Process CPU
time

A 24 ms
B 2 ms

If a short-running process runs before a long-running
process, the runtime and waiting time of the long
process process get slightly worse
If a long-running process runs before a short-running
process, the runtime and waiting time of the short
process get significantly worse

Execution Runtime Average Waiting time Average
order A B runtime A B waiting time

PA, PB 24 ms 26 ms 24+26
2 = 25 ms 0 ms 24 ms 0+24

2 = 12 ms

PB , PA 26 ms 2 ms 2+26
2 = 14 ms 2 ms 0 ms 0+2

2 = 1 ms

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 7/31



Process Switching Scheduling Methods (Algorithms)

Scheduling Methods
Several scheduling methods (algorithms) exist

Each method tries to comply with the well-known scheduling criteria and
principles in varying degrees

Some scheduling methods:
Priority-driven scheduling
First Come First Served (FCFS) = First In First Out (FIFO)
Last Come First Served (LCFS)
Round Robin (RR) with time quantum
Shortest/Longest Job First (SJF/LJF)
Shortest/Longest Remaining Time First (SRTF/LRTF)
Highest Response Ratio Next (HRRN)
Earliest Deadline First (EDF)
Fair-share scheduling
Static multilevel scheduling
Multilevel feedback scheduling
Completely Fair Scheduler (CFS)
Earliest Eligible Virtual Deadline First (EEVDF)

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 8/31



Process Switching Scheduling Methods (Algorithms)

Modern operating systems often implement several scheduling methods

In Linux e.g. each process is assigned to a specific scheduling method
For “real-time” processes. . .

SCHED_FIFO (priority-driven scheduling, non-preemptive)
SCHED_RR (preemptive)
SCHED_DEADLINE (EDF scheduling, preemptive)

For “normal” processes. . .
SCHED_OTHER (default Linux time-sharing scheduling) is implemented as:

Multilevel Feedback Scheduling (until Kernel 2.4)
O(1) scheduler (Kernel 2.6.0 until 2.6.22)
Completely Fair Scheduler (Kernel 2.6.23 until Kernel 6.5.13)
Earliest Eligible Virtual Deadline First scheduler (since Kernel 6.6)

$ ps a | grep okular
359675 pts /2 Sl 0:04 okular bts_WS2122_slideset_08_en .pdf

$ chrt -p 359675
pid 359675 's current scheduling policy : SCHED_OTHER
pid 359675 's current scheduling priority : 0

SCHED_OTHER: chrt -o -p PRIO PID
SCHED_FIFO: chrt -f -p PRIO PID
SCHED_RR: chrt -r -p PRIO PID
SCHED_DEADLINE: chrt -d –sched-runtime NS –sched-deadline NS –sched-period NS 0 PID

“A SCHED_DEADLINE task should receive runtime microseconds of execution time every period microseconds, and these runtime
microseconds are available within deadline microseconds from the beginning of the period.”
Source: https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 9/31

https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt


Process Switching Scheduling Methods (Algorithms)

Priority-driven Scheduling

Processes are executed according to their priority (= importance or
urgency)
The highest priority process in state ready gets the CPU assigned

The priority may depend on various criteria, such as static (assigned)
priority level, required resources, rank of the user, demanded real-time
criteria,. . .

Can be preemptive and non-preemptive
The priority values can be assigned static or dynamic

Static priorities remain unchanged throughout the lifetime of a process,
and are often used in real-time systems
Dynamic priorities are adjusted from time to time
=⇒ Multilevel feedback scheduling (see slide 21)

Risk of (static) priority-driven scheduling: Processes with low priority
values may starve (=⇒ this is not fair)
Priority-driven scheduling can be used for interactive systems

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 10/31



Process Switching Scheduling Methods (Algorithms)

Priority-driven Scheduling

Source: William Stallings. Operating Systems. 4th edition. Prentice Hall (2001). P.401

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 11/31



Process Switching Scheduling Methods (Algorithms)

Priority-driven Scheduling – Example

4 processes shall be processed
on a single CPU/core system
All processes are at time point
0 in state ready

Execution order of the
processes as Gantt chart
(timeline)

Process CPU time Priority
A 8 ms 3
B 4 ms 15
C 7 ms 8
D 13 ms 4

The CPU time is the time that the process needs to access the CPU to complete its execution
Runtime = “lifetime” = time period between the creation and the termination of a process = (CPU time + waiting time)

Runtime of the processes
Process A B C D
Runtime 32 4 11 24

Avg. runtime = 32+4+11+24
4 = 17.75 ms

Waiting time of the processes
Process A B C D
Waiting time 24 0 4 11
Avg. waiting time = 24+0+4+11

4 = 9.75 ms
Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 12/31



Process Switching Scheduling Methods (Algorithms)

First Come First Served (FCFS)

Works according to the principle First In First Out (FIFO)
Running processes are not interrupted

It is non-preemptive scheduling
FCFS is fair

All processes are executed
The average waiting time may be very high under certain
circumstances

Processes with short execution time may need to wait for a long time if
processes with long execution times have arrived before

FCFS/FIFO can be used for batch processing (=⇒ slide set 1)
FIFO is used in Linux for non-preemptive “real-time” processes

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 13/31



Process Switching Scheduling Methods (Algorithms)

First Come First Served – Example

4 processes shall be
processed on a single
CPU/core system
Execution order of
the processes as
Gantt chart
(timeline)

Process CPU time Creation time
A 8 ms 0 ms
B 4 ms 1 ms
C 7 ms 3 ms
D 13 ms 5 ms

The CPU time is the time that the process needs to access the CPU to complete its execution
Runtime = “lifetime” = time period between the creation and the termination of a process = (CPU time + waiting time)

Runtime of the processes
Process A B C D
Runtime 8 11 16 27

Avg. runtime = 8+11+16+27
4 = 15.5 ms

Waiting time of the processes
Process A B C D
Waiting time 0 7 9 14
Avg. waiting time = 0+7+9+14

4 = 7.5 ms
Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 14/31



Process Switching Scheduling Methods (Algorithms)

Round Robin – RR (1/2)

Time slices with a fixed duration are specified
The processes are queued in a cyclic queue
according to the FIFO principle

The first process in the queue gets the CPU
assigned for the duration of a time slice
After the expiration of the time slice, the
process gets the CPU reassigned and it is
positioned at the end of the queue
Whenever a process is completed successfully,
it is removed from the queue

New processes are inserted at the end of the
queue

The CPU time is distributed fairly among the processes
RR with time slice size ∞ behaves like FCFS

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 15/31



Process Switching Scheduling Methods (Algorithms)

Round Robin – RR (2/2)

The longer the execution time of a process is, the more rounds are
required for its complete execution
The size of the time slices influences the performance of the system

The shorter they are, the more process switches must take place
=⇒ Increased overhead
The longer they are, the more simultaneousness gets lost
=⇒ The system hangs/becomes jerky

The size of the time slices is usually in single or double-digit millisecond
range
Prefers processes with short execution time
Preemptive scheduling method
Round Robin scheduling can be used for interactive systems
Round Robin is used in Linux for preemptive “real-time” processes

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 16/31



Process Switching Scheduling Methods (Algorithms)

Round Robin – Example

4 processes shall be processed
on a single CPU/core system
All processes are at time point
0 in state ready

Time quantum q = 1 ms
Execution order of the
processes as Gantt chart
(timeline)

Process CPU time
A 8 ms
B 4 ms
C 7 ms
D 13 ms

The CPU time is the time that the process needs to access the CPU to complete its execution
Runtime = “lifetime” = time period between the creation and the termination of a process = (CPU time + waiting time)

Runtime of the processes
Process A B C D
Runtime 26 14 24 32
Avg. runtime = 26+14+24+32

4 = 24 ms

Waiting time of the processes
Process A B C D
Waiting time 18 10 17 19
Avg. waiting time = 18+10+17+19

4 = 16 ms
Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 17/31



Process Switching Scheduling Methods (Algorithms)

Earliest Deadline First (EDF)

Objective: Processes should comply with their (deadlines) when possible
Processes in ready state are arranged according to their deadline

The process with the closest deadline gets the CPU assigned next
The queue is reviewed and reorganized whenever. . .

a new process switches into state ready
or an active process terminates

Can be implemented as preemptive and non-preemptive scheduling
Preemptive EDF can be used in real-time operating systems
Non-preemptive EDF can be used for batch processing

EDF is used in Linux for preemptive “real-time” processes

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 18/31



Process Switching Scheduling Methods (Algorithms)

Earliest Deadline First – Example

4 processes shall be processed
on a single CPU/core system
All processes are at time point
0 in state ready

Execution order of the
processes as Gantt chart
(timeline)

Process CPU time Deadline
A 8 ms 25
B 4 ms 18
C 7 ms 9
D 13 ms 34

The CPU time is the time that the process needs to access the CPU to complete its execution
Runtime = “lifetime” = time period between the creation and the termination of a process = (CPU time + waiting time)

Runtime of the processes
Process A B C D
Runtime 19 11 7 32

Avg. runtime = 19+11+7+32
4 = 17.25 ms

Waiting time of the processes
Process A B C D
Waiting time 11 7 0 19
Avg. waiting time = 11+7+0+19

4 = 9.25 ms
Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 19/31



Process Switching Scheduling Methods (Algorithms)

Fair-Share

Fair-Share distributes the available resources among groups of
processes in a fair manner
Special feature:

The computing time is allocated to the users and not the processes
The computing time, which is allocated to a user, is independent from
the number of its processes

Users get resource shares
Fair share is often used in cluster and grid systems

Fair share is implemented in job schedulers and meta-schedulers (e.g. SUN/Oracle/Univa/Altair
Grid Engine) for assigning the jobs to resources in grid sites and distributing jobs among grid sites
Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 20/31



Process Switching Scheduling Methods (Algorithms)

Multilevel Feedback Scheduling (1/2)

It is impossible to predict the execution time precisely in advance
Solution: Processes, which utilized much execution time in the past, get
sanctioned

Multilevel feedback scheduling works with multiple queues
Each queue has a different priority or time multiplex
(e.g. 70%:15%:10%:5%)

Each new process is added to the top queue
This way, it has the highest priority

Each queue uses Round Robin
If a process returns the CPU voluntarily, it is added to the same queue
again
If a process utilized its entire time slice, it is inserted into the next lower
queue, which has a lower priority

The priorities are therefore dynamically assigned with this method

Multilevel feedback scheduling is preemptive scheduling
Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 21/31



Process Switching Scheduling Methods (Algorithms)

Multilevel Feedback Scheduling (2/2)

Benefit: No complicated
estimations!

New processes are
quickly assigned to a
priority category

Prefers new processes
over older (longer-running)
processes
Processes with many input and output operations are preferred because
they are inserted back into the original queue again when they
voluntarily resign the CPU on voluntary basis
=⇒ This way, they keep their priority value
Older, longer-running processes are delayed

Source: William Stallings. Operating Systems. 4th edition. Prentice Hall (2001). P.413

Many modern operating systems use variants of multilevel feedback scheduling for the scheduling of the processes.
Examples: Linux for “normal” processes (until Kernel 2.4), Mac OS X, FreeBSD, NetBSD and the Windows NT family
Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 22/31



Process Switching Scheduling Methods (Algorithms)

Completely Fair Scheduler (Linux since 2.6.23) – Part 1/4
The kernel implements a
CFS scheduler for every
CPU core and maintains a
variable vruntime (virtual
runtime) for every
SCHED_OTHER process

The value represents a
virtual processor runtime
in nanoseconds

vruntime indicates how long the particular process has already used the
CPU core

The process with the lowest vruntime gets access to the CPU core next
The management of the processes is done using a red-black tree
(self-balancing binary search tree)

The processes are sorted in the tree by their vruntime values
Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 23/31



Process Switching Scheduling Methods (Algorithms)

Completely Fair Scheduler (Linux since 2.6.23) – Part 2/4
Aim: All processes should
get a similar (fair) share of
computing time of the CPU
core they are assigned to
=⇒ For n processes, each
process should get 1/n of
the CPU time

If a process got the CPU core assigned, it can run until its vruntime
value has reached the targeted portion of 1/n of the available CPU time
The scheduler aims for an equal vruntime value for all processes

The CFS scheduler only takes care of the scheduling of the “normal” (non-real-time) processes
that are assigned to the scheduling method SCHED_OTHER

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 24/31



Process Switching Scheduling Methods (Algorithms)

Completely Fair Scheduler (Linux since 2.6.23) – Part 3/4
The values are the keys of
the inner nodes
Leaf nodes (NIL nodes)
have no keys and contain
no data
NIL stands for none,
nothing, null, which means
it is a null value or null
pointer
For fairness reasons, the scheduler assigns the CPU core next to the
leftmost process in the tree
If a process gets replaced from the CPU core, the vruntime value is
increased by the time the process ran on the CPU core

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 25/31



Process Switching Scheduling Methods (Algorithms)

Completely Fair Scheduler (Linux since 2.6.23) – Part 4/4
The nodes (processes) in
the tree move continuously
from right to left
=⇒ fair distribution of CPU
resources

The scheduler takes into account the static process priorities (nice
values) of the processes
The vruntime values are weighted differently depending on the nice
value

In other words: The virtual clock can run at different speeds

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 26/31



Process Switching Scheduling Methods (Algorithms)

Earliest Eligible Virtual Deadline First – Part 1/4

The Linux kernel since v6.6 uses the EEVDF scheduler instead of CFS
EEVDF combines the fairness concept from CFS (Completely Fair
Scheduler) with deadline-based scheduling like EDF (Earliest Deadline
First) from real-time systems
CFS and EEVDF both. . .

aim to provide all processes a similar (fair) share of computing time of
the CPU core they are assigned to
use the static process priorities (nice values) to let the virtual clock
(vruntime) run at different speeds

EEVDF introduces some new values for every process:
lag, eligibility, eligible time, virtual deadline

Some sources worth reading about EEVDF

An EEVDF CPU scheduler for Linux. Jonathan Corbet (March 2023). https://lwn.net/Articles/925371/
EEVDF Patch Notes. Kuanch (August 2024). https://hackmd.io/@Kuanch/eevdf
Thinking about eevdf. Chunyu (August 2024). https://chunyu.sh/blog/thinking-about-eevdf/
EEVDF Scheduler. The kernel development community. https://docs.kernel.org/next/scheduler/sched-eevdf.html

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 27/31

https://lwn.net/Articles/925371/
https://hackmd.io/@Kuanch/eevdf
https://chunyu.sh/blog/thinking-about-eevdf/
https://docs.kernel.org/next/scheduler/sched-eevdf.html


Process Switching Scheduling Methods (Algorithms)

Earliest Eligible Virtual Deadline First – Part 2/4

With EEVDF, the kernel maintains a lag value for every process
The lag of a process is the difference between the ideal (calculated) CPU
time the process should have gotten and the CPU time it got
lag < 0 =⇒ too much CPU time has been allocated to the process
lag ≥ 0 =⇒ the process has not received its fair share of CPU time

Only processes with a positive lag value are eligible to run
Motivation for maintaining the lag and eligibility: More fairness

Source: https://chunyu.sh/blog/thinking-about-eevdf/

Process lag = Process current weighted vruntime - weighted average of every process’s vruntime

The next slide includes an example that visualizes the calculation of the
process lag

In the example, 3 processes are assigned to the same CPU core and start
at the same time
=⇒ Initially, they all have a lag of value zero

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 28/31

https://chunyu.sh/blog/thinking-about-eevdf/


Process Switching Scheduling Methods (Algorithms)

Earliest Eligible Virtual Deadline First – Part 3/4

Source of this example: Completing the EEVDF scheduler. Jonathan Corbet (April 2024). https://lwn.net/Articles/969062/

Process A B C
lag [ms] 0 0 0
Eligible yes yes yes

No process has a negative lag =⇒ all are eligible
We assume: All processes have the same static priority (nice
value) and the time slice length for every process is 30 ms
We assume: The scheduler decides A runs first, and A runs for
the full time slice

Process A B C
lag [ms] -20 10 10
Eligible no yes yes

Each process gets 1/3 of the total CPU time (10 ms of 30 ms)
=⇒ A did run 30 ms, so its lag is -20 ms
=⇒ B and C did not run and have now 10 ms lag each
We assume: The scheduler decides B runs next, and B runs for
the full time slice

Process A B C
lag [ms] -10 -10 20
Eligible no no yes

Each process gets 1/3 of the total CPU time (10 ms of 30 ms)
=⇒ B did run 30 ms, so its lag is -10 ms
=⇒ C did not run and has now 20 ms lag
The scheduler’s next decision will be C

The sum of all lag values of the processes that are assigned to a CPU core is always value zero

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 29/31

https://lwn.net/Articles/969062/


Process Switching Scheduling Methods (Algorithms)

Earliest Eligible Virtual Deadline First – Part 4/4

EEVDF maintains a virtual deadline for every process
The process with the earliest deadline that is eligible to run will run next

The virtual deadline is calculated using the eligible time of the process
and its time slice length (depends of the static priority = nice value)

Eligible time
Remember: Processes with a. . .

lag ≥ 0 are eligible to run
lag < 0 got too much CPU time allocated and are ineligible to run

EEVDF calculates for every ineligible process its eligible time, which is
the time when it will become eligible again

Reason for maintaining the virtual deadline: Better latency for
real-time and interactive processes

EEVDF aims to be fairer and offer better latency compared to CFS

Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 30/31



Process Switching Scheduling Methods (Algorithms)

Classic and modern Scheduling Methods
Scheduling Fair CPU time Takes priorities
NP P must be known into account

Priority-driven scheduling X X no no yes
First Come First Served = FIFO X yes no no
Last Come First Served X X no no no
Round Robin X yes no no
Shortest/Longest Job First X no yes no
Shortest Remaining Time First X no yes no
Longest Remaining Time First X no yes no
Highest Response Ratio Next X yes yes no
Earliest Deadline First X X yes no no
Fair-share X yes no no
Static multilevel scheduling X no no yes (static)
Multilevel feedback scheduling X yes no yes (dynamic)
O(1)-Scheduler X yes no yes
Completely Fair Scheduler X yes no yes
Earliest Eligible Virtual Deadline First X yes no yes

NP = non-preemptive scheduling, P = preemptive scheduling
A scheduling method is “fair” when each process gets the CPU assigned at some point
It is impossible to calculate the execution time precisely in advance

Linux 2.6.0 until 2.6.22 implements the O(1) scheduler. It does not play a role here for time reasons
https://www.ibm.com/developerworks/library/l-scheduler/index.html
Prof. Dr. Christian Baun – 8th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 31/31

https://www.ibm.com/developerworks/library/l-scheduler/index.html

	Process Switching
	Dispatcher
	Scheduling Criteria and Scheduling Strategies
	Non-preemptive and preemptive Scheduling

	Scheduling Methods (Algorithms)
	Modern operating systems often implement several scheduling methods
	Priority-driven Scheduling
	First Come First Served
	Round Robin
	Earliest Deadline First
	Fair-Share
	Multilevel Feedback Scheduling
	Completely Fair Scheduler (Linux since 2.6.23)
	Earliest Eligible Virtual Deadline First (Linux since Kernel v6.6)
	Classic and modern Scheduling Methods


