
File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

6th Slide Set
Operating Systems

Prof. Dr. Christian Baun

Frankfurt University of Applied Sciences
(1971–2014: Fachhochschule Frankfurt am Main)

Faculty of Computer Science and Engineering
christianbaun@fb2.fra-uas.de

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 1/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Learning Objectives of this Slide Set
At the end of this slide set, you know/understand. . .

the functions and basic terminology of file systems
what inodes and clusters are
how block addressing works
the structure of selected file systems
an overview about Windows file systems and their characteristics
what journaling is and why it is used by many file systems today
how addressing via extents works
what copy-on-write is
how defragmentation works and when it makes sense to defragment

Exercise sheet 6 repeats the
contents of this slide set
which are relevant for these
learning objectives

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 2/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

File Systems. . .

organize the storage of files on data
storage devices

Files are sequences of Bytes of any
length which belongs together with
regard to content

manage file names and attributes
(metadata) of files
form a namespace

Hierarchy of directories and files

Absolute path names: Describe the complete path from the root to the file
Relative path names: All paths, which do not begin with the root

are a layer of the operating system
Processes and users access files via their abstract file names and not via
their memory addresses

should cause only little overhead for metadata
Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 3/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Technical Principles of File Systems
File systems address clusters and not blocks of the storage device

Each file occupies an integer number of clusters
In literature, the clusters are often called zones or blocks

This results in confusion with the sectors of the devices, which are in
literature sometimes called blocks too

The size of the clusters is essential for the efficiency of the file system
The smaller the clusters are. . .

Rising overhead for large files
Decreasing capacity loss due to internal fragmentation

The bigger the clusters are. . .
Decreasing overhead for large files
Rising capacity loss due to internal fragmentation

The bigger the clusters, the more memory is lost due to internal fragmentation

File size: 1 kB. Cluster size: 2 kB =⇒ 1 kB gets lost
File size: 1 kB. Cluster size: 64 kB =⇒ 63 kB get lost!

The cluster size can be specified, while creating the file system
Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 4/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Basic Terminology of Linux File Systems

In Linux: Cluster size ≤ size of memory pages (page size)

The page size depends on the architecture
x86 = 4 kB, Alpha and UltraSPARC = 8 kB, Apple Silicon = 16 kB, IA-64 = 4/8/16/64 kB

The creation of a file causes the creation of an Inode (index node)
It stores a file’s metadata, except the file name

Metadata are among others the size, UID/GID, permissions and date
Each inode has a unique inode number inside the file system
The inode contains references to the file’s clusters
All Linux file systems base on the functional principle of inodes

A directory is a file too (see slide 12)
Content: File name and inode number for each file in the directory

The traditional working method of Linux file systems: Block
addressing

Actually, the term is misleading because file systems always address
clusters and not blocks (of the volume)

However, the term is established in literature since decades
Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 5/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Block Addressing using the Example ext2/3

Each inode directly stores the numbers of up to 12 clusters

If a file requires more
clusters, these clusters are
indirectly addressed
Minix, ext2/3, ReiserFS and
Reiser4 implement block
addressing

Good explanation

http://lwn.net/Articles/187321/

Scenario: No more files can be created in the file system, despite the fact that sufficient capacity is available
Possible explanation: No more inodes are available
The command df -i shows the number of existing inodes and how many are still available

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 6/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Direct and indirect Addressing using the Example ext2/3

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 7/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Minix

The Minix operating system http://www.minix3.org

Unix-like operating system
Developed since 1987 by Andrew S. Tanenbaum for educational purposes
https://www.youtube.com/watch?v=bx3KuE7UjGA

Latest revision is 3.3.0 is from 2014
Intel chipsets post-2015 run MINIX 3 internally as the software component of the Intel
Management Engine
https://www.zdnet.com/article/minix-intels-hidden-in-chip-operating-system/
https://linuxnews.de/2017/11/minix-in-der-intel-management-engine/
https://itsfoss.com/fact-intel-minix-case/

Standard Linux file system until 1992
Not surprising, because Minix was the basis for the development of Linux

The Minix file system causes low overhead
Useful applications „today“: Boot floppy disks and RAM disks

Storage is represented as a linear chain of equal-sized blocks (1-8 kB)
A Minix file system contains just 6 areas

The simple structure makes it ideal for educational purposes
Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 8/50

http://www.minix3.org
https://www.youtube.com/watch?v=bx3KuE7UjGA
https://www.zdnet.com/article/minix-intels-hidden-in-chip-operating-system/
https://linuxnews.de/2017/11/minix-in-der-intel-management-engine/
https://itsfoss.com/fact-intel-minix-case/

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Minix File System Structure

Boot block. Contains the boot loader that starts the operating system
Super block. Contains information about the file system,

e.g. number of inodes and clusters
Inodes bitmap. Contains a list of all inodes with the information,
whether the inode is occupied (value: 1) or free (value: 0)
Clusters bitmap. Contains a list of all clusters with the information,
whether the cluster is occupied (value: 1) or free (value: 0)
Inodes. Contains the inodes with the metadata

Every file and every directory is represented by at least a single inode,
which contains the metadata

Metadata is among others the file type, UID/GID, access privileges, size
Data. Contains the contents of the files and directories

This is the biggest part in the file system
Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 9/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

ext2/3/4 File System Structure

The clusters of the file system are combined to block groups of the
same size

The information about the metadata and free clusters of each block
group is maintained in the respective block group

Maximum size of a block group: 8x cluster size in bytes

Example: If the cluster size is 4096 Bytes, each block group can contain up to 32768 clusters.
=⇒ The maximum block size is 32768 clusters × 4096 Bytes cluster size = 134,217,728 Bytes = 131,072 kB = 128 MB

Benefit of block groups (when using HDDs!): Inodes (metadata) are
physically located close to the clusters they address

This reduces seek times and the degree of fragmentation
When using flash storage, the position of the data in the individual
memory cells is irrelevant for the performance

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 10/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

ext2/3/4 Block Group Structure

The first cluster of the file system contains the boot block (size: 1 kB)
It contains the boot manager, which starts the operating system

Each block group contains a copy of the super block
This improves the data security

The descriptor table contains among others:
The cluster numbers of the block bitmap and inode bitmap
The number of free clusters and inodes in the block group

Block bitmap and inode bitmap are each a single cluster big
They contain the information, which clusters and inodes in the block
group are occupied

The inode table contains the inodes of the block group
The remaining clusters of the block group can be used for the data

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 11/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Analyze File Systems (1/3)

We already know. . .
Directories are files
that store file names
and inode numbers

Let’s take a look
inside. . .

With the specification
of the file system and
some tools, the
individual fields of the
directory records can
be examined. For
example the record of
liesmich.txt

lsblk | grep sda1
sda 8:0 1 29 ,3G 0 disk

sda1 8:1 1 29 ,3G 0 part

mkfs.ext4 /dev/sda1

mkdir /mnt/test
mount -t ext4 /dev/sda1 /mnt/test/

df -h | grep test
/dev/sda1 29G 45M 28G 1% /mnt/test

ls -l /mnt/test
insgesamt 16
drwx ------ 2 root root 16384 Sep 14 09:38 lost+ found

mkdir /mnt/test/ testfolder
echo " Betriebssysteme " > /mnt/test/ testfolder / liesmich .txt
echo " OpSys " > /mnt/test/ testfolder / file2 .txt
echo "12345" > /mnt/test/ testfolder / anotherfile .dat
touch /mnt/test/ testfolder / empty_file

ls -lai /mnt/test/ testfolder /
insgesamt 20
392449 drwxr -xr -x 2 root root 4096 Sep 14 09:59 .

2 drwxr -xr -x 4 root root 4096 Sep 14 09:46 ..
392452 -rw -r--r-- 1 root root 6 Sep 14 09:58 anotherfile .dat
392453 -rw -r--r-- 1 root root 0 Sep 14 09:59 empty_file
392451 -rw -r--r-- 1 root root 6 Sep 14 09:47 file2 .txt
392450 -rw -r--r-- 1 root root 16 Sep 14 09:47 liesmich .txt

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 12/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Analyze File Systems (2/3)

We analyze the
contents of
testfolder.out with
command line tools like
hexdump or od (octal
dump). Alternatively, it
is possible to use a
graphical tool such as
wxHexEditor (see
slide 27).

debugfs /dev/sda1
debugfs 1.44.5 (15-Dec-2018)
debugfs: imap <392449>
Inode 392449 is part of block group 48

located at block 1572896, offset 0x0000
debugfs: dump testfolder testfolder.out
debugfs: quit

ls -l testfolder.out
-rw-r--r-- 1 root root 4096 Sep 14 10:00 testfolder.out

hexdump -C testfolder.out
00000000 01 fd 05 00 0c 00 01 02 2e 00 00 00 02 00 00 00 |................|
00000010 0c 00 02 02 2e 2e 00 00 02 fd 05 00 14 00 0c 01 |................|
00000020 6c 69 65 73 6d 69 63 68 2e 74 78 74 03 fd 05 00 |liesmich.txt....|
00000030 14 00 09 01 66 69 6c 65 32 2e 74 78 74 00 00 00 |....file2.txt...|
00000040 04 fd 05 00 18 00 0f 01 61 6e 6f 74 68 65 72 66 |........anotherf|
00000050 69 6c 65 2e 64 61 74 00 05 fd 05 00 9c 0f 0a 01 |ile.dat.........|
00000060 65 6d 70 74 79 5f 66 69 6c 65 00 00 00 00 00 00 |empty_file......|
00000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
...

A hex editor visualizes data in several ways

1st column: Number of previous bytes =⇒ offset or position
indicator (address) inside the file in hexadecimal
representation
2nd column: Bytes of the line in hexadecimal representation
3rd column: Bytes of the line in ASCII representation

Some fundamentals. . .

Hexadecimal system =⇒ base 16
1 hexadecimal digit represents 4 bits
2 hexadecimal digits represent 1 byte

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 13/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Analyze File Systems (3/3)

https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

Offset Size Name Description
0x0 4 Bytes inode Number of the inode that this directory record points to
0x4 2 Bytes record length Directory record length
0x6 1 Byte name length Length of the file name
0x7 1 Byte file type 0x0 = unknown, 0x1 = regular file, 0x2 = directory,

0x3 = character-device special file, 0x4 = block-device special file,
0x5 = FIFO (named pipe), 0x6 = socket, 0x7 = symbolic link

0x8 character string File name

Information about Big-Endian
vs. Little-Endian Byte Order

x86 processors use the
little-endian byte order. If a
data field is several bytes long,
the least significant byte (LSB)
is in the first position, i.e. on
the lowest memory address.
The more significant bytes are
on the following memory
addresses

00000010 -- -- -- -- -- -- -- -- 02 fd 05 00 14 00 0c 01 |................|
00000020 6c 69 65 73 6d 69 63 68 2e 74 78 74 -- -- -- -- |liesmich.txt....|

Inode number: 02 fd 05 00 =⇒ 00 05 fd 02

$ printf "%d\n" 0x0005fd02
392450

Directory record length: 14 00 =⇒ 00 14 =⇒ 20 Bytes
$ printf "%d\n" 0x0014
20

File name length: 0c =⇒ 12 Bytes
File type: 01 =⇒ regular file

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 14/50

https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

File Allocation Table (FAT)

The FAT file system was released in 1980 with QDOS, which was later renamed to MS-DOS

QDOS = Quick and Dirty Operating System

The File Allocation Table (FAT) file system is based on the data
structure of the same name
The FAT (File Allocation Table) is a table of fixed size
For each cluster in the file system, an entry exists in the FAT with the
following information about the cluster:

Cluster is free or the storage medium is damaged at this point
Cluster is occupied by a file

In this case it stores the address of the next cluster, which belongs to the
file or it is the last cluster of the file

The clusters of a file are a linked list (cluster chain)
=⇒ see slides 18 und 20

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 15/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

FAT File System Structure (1/2)

The boot sector contains executable x86 machine code, which starts
the operating system, and information about the file system:

Block size of the storage device (512, 1024, 2048 or 4096 Bytes)
Number of blocks per cluster
Number of blocks (sectors) on the storage device
Description (name) of the storage device
Description of the FAT version

Between the boot block and the first FAT, optional reserved blocks
may exist, e.g. for the boot manager

These clusters can not be used by the file system

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 16/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

FAT File System Structure (2/2)

The File Allocation Table (FAT) stores a record for each cluster in the
file system, which informs, whether the cluster is occupied or free

The FAT’s consistency is essential for the functionality of the file system
Therefore, usually a copy of the FAT exists, in order to have a complete
FAT as backup in case of a data loss

In the root directory, every file and every directory is represented by an
entry:

With FAT12 and FAT16, the root directory is located directly behind the
FAT and has a fixed size

The maximum number of directory entries is therefore limited
With FAT32, the root directory can reside at any position in the data
region and has a variable size

The last region contains the actual data
Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 17/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Root Directory and FAT

The topic FAT is well explained by. . .

Betriebssysteme, Carsten Vogt, 1st edition, Spektrum Akademischer Verlag (2001), P. 178-179

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 18/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Structure of Root Directory Entries

Why is 4 GB the maximum file size on FAT32?

Only 4 Bytes are available for specifying the file size.

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 19/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Risk of File System Inconsistencies

Typical problems of file systems based on a FAT:
lost clusters
cross-linked clusters

Source: http://www.sal.ksu.edu/faculty/tim/ossg/File_sys/file_system_errors.html

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 20/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

FAT12

Released in 1980 with the first QDOS release

Length of the cluster numbers: 12 bits
Up to 212 = 4096 clusters can be addressed

Cluster size: 512 Bytes to 4 kB
Supports storage media (partitions) up to 16 MB

212 ∗ 4 kB cluster size = 16384 kB = 16 MB maximum file system size

File names are supported only in 8.3 format
Up to 8 characters can be used to represent the file name and 3
characters for the file name extension

Used „today“ only for DOS and Windows floppy disks

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 21/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

FAT16

Released in 1983 because it was foreseeable
that an address space of 16 MB is insufficient
Up to 216 = 65524 clusters can be addressed

12 clusters are reserved
Cluster size: 512 Bytes to 256 kB
File names are supported only in 8.3 format
Main field of application today: Mobile storage
media ≤ 2 GB

Sources:
http://support.microsoft.com/kb/140365/de
http://secrets.mysfyts.com/index.asp?Page=Fat
http://web.allensmith.net/Storage/HDDlimit/FAT16.htm

Partition size Cluster size
up to 31 MB 512 Bytes

32 MB - 63 MB 1 kB
64 MB - 127 MB 2 kB

128 MB - 255 MB 4 kB
256 MB - 511 MB 8 kB
512 MB - 1 GB 16 kB

1 GB - 2 GB 32 kB
2 GB - 4 GB 64 kB
4 GB - 8 GB 128 kB
8 GB - 16 GB 256 kB

The table contains default cluster sizes
of Windows 2000/XP/Vista/7/8/10.
The cluster size can be manually
specified during the file system creation

Some operating systems (e.g. MS-DOS
and Windows 95/98/Me) do not
support clusters > 32 kB

Some operating systems (e.g. Windows
2000/XP/7/8/10) do not support
clusters > 64 kB

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 22/50

http://support.microsoft.com/kb/140365/de
http://secrets.mysfyts.com/index.asp?Page=Fat
http://web.allensmith.net/Storage/HDDlimit/FAT16.htm

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

FAT32

Released in 1997 because of the rising HDD capacities and because
clusters > 32 kB waste a lot of storage
Size of the cluster numbers records in the FAT:
32 Bits

4 Bits are reserved
Therefore, only 228 = 268, 435, 456 clusters can
be addressed

Cluster size: 512 Bytes to 32 kB
Maximum file size: 4 GB

Reason: Only 4 Bytes are available for
indicating the file size

Main field of application today: Mobile storage
media > 2 GB

Sources: http://support.microsoft.com/kb/140365/de

Partition size Cluster size
up to 63 MB 512 Bytes

64 MB - 127 MB 1 kB
128 MB - 255 MB 2 kB
256 MB - 511 MB 4 kB
512 MB - 1 GB 4 kB

1 GB - 2 GB 4 kB
2 GB - 4 GB 4 kB
4 GB - 8 GB 4 kB
8 GB - 16 GB 8 kB

16 GB - 32 GB 16 kB
32 GB - 2 TB 32 kB

The table contains default cluster sizes
of Windows 2000/XP/Vista/7/8/10.
The cluster size can be manually
specified during the file system creation

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 23/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Longer File Names by using VFAT

VFAT (Virtual File Allocation Table) was released in 1997
Extension for FAT12/16/32 to support long filenames

Because of VFAT, Windows supported for the first time. . .
file names that do not comply with the 8.3 format
file names up to a length of 255 characters

Implements Unicode character encoding

Long File Names (LFN)

VFAT = great example for implementing a new feature + keeping backward compatibility
LFNs (255 characters max) are split into max. 20 pseudo-directory records (see slide 25)
File systems without LFN support ignore pseudo-directory records and show only the
shortened name
The first 4 bits of the file attributes field of VFAT records have value 1 (see slide 18)
Special attribute: Upper/lower case is displayed, but ignored

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 24/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Compatibility with MS-DOS and Windows up to v3.11

VFAT and NTFS (see slide 38) store for every file a unique filename in
8.3 format

Operating systems without the VFAT extension ignore the
pseudo-directory entries and only show the shortened file name

This way, Microsoft operating systems without NTFS and VFAT support
can access files on NTFS partitions

Challenge: The short file names must be unique
Solution:

All special characters and dots inside the name are erased
All lowercase letters are converted to uppercase letters
Only the first 6 characters are kept

Next, a ~1 follows before the dot
The first 3 characters after the dot are kept and the rest is erased
If a file with the same name already exists, ~1 is replaced with ~2, etc.

Example:
A very long filename.test.pdf =⇒ AVERYL~1.pdf

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 25/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Analyze FAT File Systems (1/3)
dd if=/dev/zero of=./fat32.dd bs=1024000 count=34
34+0 Datensätze ein
34+0 Datensätze aus
34816000 Bytes (35 MB) kopiert, 0,0213804 s, 1,6 GB/s
mkfs.vfat -F 32 fat32.dd
mkfs.vfat 3.0.16 (01 Mar 2013)

mkdir /mnt/fat32
mount -o loop -t vfat fat32.dd /mnt/fat32/

mount | grep fat32
/tmp/fat32.dd on /mnt/fat32 type vfat (rw,relatime,fmask=0022,dmask=0022,codepage=437,iocharset=utf8,shortname

=mixed,errors=remount-ro)
df -h | grep fat32
/dev/loop0 33M 512 33M 1% /mnt/fat32

ls -l /mnt/fat32
insgesamt 0

echo "Betriebssysteme" > /mnt/fat32/liesmich.txt
cat /mnt/fat32/liesmich.txt
Betriebssysteme
ls -l /mnt/fat32/liesmich.txt
-rwxr-xr-x 1 root root 16 Feb 28 10:45 /mnt/fat32/liesmich.txt

umount /mnt/fat32/
mount | grep fat32
df -h | grep fat32

wxHexEditor fat32.dd
Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 26/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Analyze FAT File Systems (2/3)

A hex editor visualizes data in several ways

1st column: Number of previous bytes =⇒ offset
2nd column: Bytes of the line in hexadecimal representation
3rd column: Bytes of the line in ASCII representation

Some fundamentals. . .

Hexadecimal system =⇒ base 16
1 hexadecimal digit represents 4 bits
2 hexadecimal digits represent 1 byte

http://dorumugs.blogspot.de/2013/01/file-system-geography-fat32.html
http://www.win.tue.nl/~aeb/linux/fs/fat/fat-1.html

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 27/50

http://dorumugs.blogspot.de/2013/01/file-system-geography-fat32.html
http://www.win.tue.nl/~aeb/linux/fs/fat/fat-1.html

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Analyze FAT File Systems (3/3)

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 28/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

exFAT
Released in 2006 (usage is royalty-free since 2019)
Up to 232 = 4, 294, 967, 296 clusters can be addressed
Cluster size: 512 Bytes to 64 MB
Maximum file size: 16 EB (264 Bytes)
Main field of application: mobile flash memory
(> 32 GB)

Fewer write operations than file systems with a
journal (e.g. NTFS =⇒ slide 38)

In contrast to the other FAT file system
versions, the root directory does not
have a fixed position. It is located
within the data area and usually does
not reside there in one piece, but is
fragmented.

Partition size Cluster size
up to 256 MB 4 kB

256 MB - 32 GB 32 kB
32 GB - 256 TB 128 kB

The table contains default cluster sizes
of Windows 2000/XP/Vista/8/10. The
cluster size can be manually specified
during the file system creation
https://support.microsoft.com/
de-de/kb/140365

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 29/50

https://support.microsoft.com/de-de/kb/140365
https://support.microsoft.com/de-de/kb/140365

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Problem: Write Operations

If files or directories are created, relocated, renamed, erased, or
modified, write operations in the file system are carried out

Write operations shall convert data from one consistent state to a
new consistent state

If a failure occurs during a write operation, the consistency of the file
system must be checked

If the size of a file system is multiple GB, the consistency check may take
several hours or days
Skipping the consistency check, may cause data loss

Objective: Narrow down the data, which needs to be checked by
the consistency check
Solution: Collect the write operations in a journal
=⇒ Journaling file systems

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 30/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Journaling File Systems

Implement a journal, where write operations are collected before being
committed to the file system

At fixed time intervals, the journal is closed and the write operations are
carried out

Advantage: After a crash, only the files (clusters) and metadata must
be checked, for which a record exists in the journal
Drawback: Journaling increases the number of write operations, because
modifications are first written to the journal and then carried out
2 variants of journaling:

Metadata journaling
Full journaling

Helpful descriptions of the different journaling concepts. . .

Analysis and Evolution of Journaling File Systems, Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, 2005 USENIX Annual Technical Conference,
http://www.usenix.org/legacy/events/usenix05/tech/general/full_papers/prabhakaran/prabhakaran.pdf

http://www.ibm.com/developerworks/library/l-journaling-filesystems/index.html

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 31/50

http://www.usenix.org/legacy/events/usenix05/tech/general/full_papers/prabhakaran/prabhakaran.pdf
http://www.ibm.com/developerworks/library/l-journaling-filesystems/index.html

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Metadata Journaling and Full Journaling
Metadata journaling (Write-Back)

The journal contains only metadata (inode) modifications
Only the consistency of the metadata is ensured after a crash

Modifications to clusters are carried out by sync() (=⇒ write-back)
The sync() system call commits the page cache, that is also called
= buffer cache (see slide 42) to the HDD/SSD

Advantage: Consistency checks only take a few seconds
Drawback: Loss of data due to a system crash is still possible
Optional with ext3/4 and ReiserFS
NTFS and XFS implement only metadata journaling

Full journaling
Modifications to metadata and clusters of files are written to the journal
Advantage: Ensures the consistency of the files
Drawback: All write operations must be carried out twice
Optional with ext3/4 and ReiserFS

The alternative is therefore high data security and high write speed

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 32/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Compromise between the Variants: Ordered Journaling

Most Linux distributions use by default a compromise between both
variants
Ordered journaling

The journal contains only metadata modifications
File modifications are carried out in the file system first and next
the relevant metadata modifications are written into the journal
Advantage: Consistency checks only take a few seconds and high write
speed equal to journaling, where only metadata is journaled
Drawback: Only the consistency of the metadata is ensured

If a crash occurs while incomplete transactions in the journal exist, new
files and attachments get lost because the clusters are not yet allocated
to the inodes
Overwritten files after a crash may have inconsistent content and maybe
cannot be repaired, because no copy of the old version exists

Examples: Only option when using JFS, standard with ext3/4 and
ReiserFS

Interesting: https://www.heise.de/newsticker/meldung/Kernel-Entwickler-streiten-ueber-Ext3-und-Ext4-209350.html

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 33/50

https://www.heise.de/newsticker/meldung/Kernel-Entwickler-streiten-ueber-Ext3-und-Ext4-209350.html

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Problem: Metadata Overhead

Every inode at block addressing addresses a certain number of cluster
numbers directly
If a file requires more clusters, they are indirectly addressed

This addressing scheme causes rising overhead with rising file size
Solution: Extents

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 34/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Extent-based Addressing

Inodes do not address individual clusters, but instead create large areas
of files to areas of contiguous blocks (extents) on the storage device
Instead of many individual cluster numbers, only 3 values are required:

Start (cluster number) of the area (extent) in the file
Size of the area in the file (in clusters)
Number of the first cluster on the storage device

Result: Lesser overhead
Examples: JFS, XFS, btrfs,
NTFS, ext4

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 35/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Extents using the Example ext4
With block addressing in ext2/3, each inode contains 15 areas with a
size of 4 Bytes each (=⇒ 60 Bytes) for addressing clusters
ext4 uses this 60 Bytes for an extent header (12 Bytes) and for
addressing 4 extents (12 Bytes each)

Extents cannot become larger than 128 MB (215 bits) because ext4, just like its predecessors ext2 and ext3, organizes the file
system clusters into so-called block groups (see slide 10) with a maximum size of 128 MB.

Maximum partition size of ext4: 248 cluster numbers × 4096 Byte cluster size = 1 Exabyte
Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 36/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Benefit of Extents using the Example ext4

With a maximum of 12 clusters, an ext3/4 inode can directly address
48 kB (at 4 kB cluster size)
With 4 extents, an ext4 inode can directly address 512 MB

If the size of a file is
> 512 MB, ext4 creates a
tree of extents

The principle is
analogous to indirect
block addressing

Helpful descriptions of Extents in ext4. . .

https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Extent_Tree
https://www.sans.org/blog/understanding-ext4-part-3-extent-trees/
https://metebalci.com/blog/a-minimum-complete-tutorial-of-linux-ext4-file-system/
An analysis of Ext4 for digital forensics: https://www.sciencedirect.com/science/article/pii/S1742287612000357

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 37/50

https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Extent_Tree
https://www.sans.org/blog/understanding-ext4-part-3-extent-trees/
https://metebalci.com/blog/a-minimum-complete-tutorial-of-linux-ext4-file-system/
https://www.sciencedirect.com/science/article/pii/S1742287612000357

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

NTFS – New Technology File System

Several different versions of the NTFS file system exist

NTFS 1.0: Windows NT 3.1 (released in 1993)
NTFS 1.1: Windows NT 3.5/3.51
NTFS 2.x: Windows NT 4.0 until SP3
NTFS 3.0: Windows NT 4.0 since SP3/2000
NTFS 3.1: Windows XP/2003/Vista/7/8/10

Recent versions of NTFS offer additional features as. . .

support for quotas since version 3.x
transparent compression
transparent encryption (Triple-DES and AES) since
version 2.x

Cluster size: 512 Bytes to 64 kB
NTFS offers, compared with its predecessor FAT, among others:

Maximum file size: 16 TB (=⇒ extents)
Maximum partition size: 256 TB (=⇒ extents)
Security features on file and directory level

Equal to VFAT. . .
implements NTFS file names up to a length of 255 Unicode characters
implements NTFS interoperability with the MS-DOS operating system
family by storing a unique file name in the format 8.3 for each file

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 38/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Structure of NTFS (1/2)
The file system contains a Master File Table (MFT)

It contains the references of the files to the clusters
Also contains the metadata of the files (file size, file type, date of
creation, date of last modification and possibly the file content)

The content of small files ≤ 900 Bytes is stored directly in the MFT

Source: How NTFS Works. Microsoft. 2003. https://technet.microsoft.com/en-us/library/cc781134(v=ws.10).aspx

When a partition is formatted, a fixed space is
reserved for the MFT

12.5% of the partition size is reserved for the
MFT by default
If the MFT area has no more free capacity, the
file system uses additional free space in the
partition for the MFT

This may cause fragmentation of the MFT
(but has no negative effects for flash memory)

Partition size Cluster size
< 16 TB 4 kB

16 TB - 32 TB 8 kB
32 TB - 64 TB 16 kB
64 TB - 128 TB 32 kB

128 TB - 256 TB 64 kB

The table contains default cluster sizes
of Windows 2000/XP/Vista/7/8/10.
The cluster size can be specified when
the file system is created

Source: http://support.microsoft.com/kb/140365/de

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 39/50

https://technet.microsoft.com/en-us/library/cc781134(v=ws.10).aspx
http://support.microsoft.com/kb/140365/de

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Structure of NTFS (2/2)

If an MFT entry refers to extents (so called „Data Runs“), it stores 3 values per extent

Start (cluster number) of the area (extent) in the file =⇒ Virtual Cluster Number (VCN)
Size of the area in the file (in clusters) =⇒ number of clusters
Number of the first cluster on the storage device =⇒ Logical Cluster Number (LCN)

Also a directory is a file (MFT entry) whose file contents are the numbers of the MFT entries (files) associated with the directory

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 40/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Most advanced Concept: Copy-on-write

Write operations do not modify/erase file system contents
Modified data is written into free clusters
Afterward, the metadata is modified for the new file

Older file versions are preserved and can be restored
Data security is better compared with journaling file systems
Snapshots can be created without delay (just metadata modification)

Examples: ZFS, btrfs and ReFS (Resilient File System)
Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 41/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Accelerating Data Access with a Cache (1/2)

Modern operating systems accelerate the access to stored data with a
Page Cache (called Buffer Cache) in the main memory

If a file is requested for reading, the kernel first tries to allocate the file in
the cache

If the file is not present in the cache, it is loaded into the cache
The page cache is never as big as the amount of data on the system

That is why rarely requested files must be replaced
If data in the cache was modified, the modification must be passed down
(written back) at some point in time
Optimal use of the cache is impossible because data accesses are
non-deterministic (unpredictable)

Modern operating systems usually do not pass down write accesses
immediately (=⇒ write-back)

Benefit: Better system performance
Drawback: System crashes may cause inconsistencies

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 42/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Accelerating Data Access with a Cache (2/2)

DOS and Windows up to version 3.11 use the Smartdrive utility to
implement a page cache

All later versions of Windows also contain a Cache Manager that
implements a page cache

Linux automatically buffers as much data as there is free space in main
memory

The command free -m returns an overview of the memory usage
The buff/cache column indicates how much main memory is currently
used for the page cache

$ free -m
total used free shared buff/cache available

Mem: 15540 5774 1609 785 8156 8650
Swap: 10689 1 10688

Good sources regarding the page cache under Linux and how to empty it manually

https://askubuntu.com/questions/770108/what-do-the-changes-in-free-output-from-14-04-to-16-04-mean
http://www.thomas-krenn.com/de/wiki/Linux_Page_Cache
http://unix.stackexchange.com/questions/87908/how-do-you-empty-the-buffers-and-cache-on-a-linux-system
http://serverfault.com/questions/85470/meaning-of-the-buffers-cache-line-in-the-output-of-free

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 43/50

https://askubuntu.com/questions/770108/what-do-the-changes-in-free-output-from-14-04-to-16-04-mean
http://www.thomas-krenn.com/de/wiki/Linux_Page_Cache
http://unix.stackexchange.com/questions/87908/how-do-you-empty-the-buffers-and-cache-on-a-linux-system
http://serverfault.com/questions/85470/meaning-of-the-buffers-cache-line-in-the-output-of-free

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Howto implement Write-through mode? (1/3)

The Write-back policy is standard in many hardware and operating
system components (see slide sets 3, 5, and 6)

How is it possible to switch to Write-through write policy?

In Linux, it is impossible to turn off the page cache globally
But it can be done on application and sometimes on file system level

However, it is only useful in some cases, like using an application with a
dedicated cache in userspace (e.g., a DBMS), using memory-like storage
devices or ramdisks or doing performance testing of devices

The Linux function call open (fcntl.h) for creating or opening a file
offers the flags O_DIRECT and O_SYNC

Setting them both specifies that write operations to this file bypass the
Linux page cache and are immediately flushed to the drive

https://man7.org/linux/man-pages/man2/open.2.html
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/open.html

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 44/50

https://man7.org/linux/man-pages/man2/open.2.html
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/open.html

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Howto implement Write-through mode? (2/3)

The mount option -o sync bypasses the page cache when using the
file systems ext2, ext3, FAT, VFAT, and UFS (Universal Flash Storage)

https://linux.die.net/man/8/mount

The mount option dax bypasses the page cache when using the file
systems ext2, ext4, and XFS

Requires memory-like block devices like Persistent Memory (pmem)

https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://lwn.net/Articles/787233/

File systems that make use of the FUSE (Filesystem in Userspace)
module offer direct-io mode where the page cache is bypassed

https://www.kernel.org/doc/Documentation/filesystems/fuse-io.txt

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 45/50

https://linux.die.net/man/8/mount
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://lwn.net/Articles/787233/
https://www.kernel.org/doc/Documentation/filesystems/fuse-io.txt

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Howto implement Write-through mode? (3/3)

The Windows function call CreateFileA (fileapi.h) for creating or
opening a file offers the flags FILE_FLAG_WRITE_THROUGH and
FILE_FLAG_NO_BUFFERING

Setting them both specifies that write operations bypass the Windows
system cache and are immediately flushed to the drive

https://devblogs.microsoft.com/oldnewthing/20210729-00/?p=105494
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea

Additional information about how to enable write-through in different operating systems

https://github.com/ronomon/direct-io
https://ext4.wiki.kernel.org/index.php/Clarifying_Direct_IO%27s_Semantics

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 46/50

https://devblogs.microsoft.com/oldnewthing/20210729-00/?p=105494
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea
https://github.com/ronomon/direct-io
https://ext4.wiki.kernel.org/index.php/Clarifying_Direct_IO%27s_Semantics

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Fragmentation

A cluster can only be assigned to a single file
If a file is bigger than a cluster, the file is split and stored in several
clusters

Fragmentation means that logically related clusters are not located
physically next to each other

Objective: Avoid frequent movements of the HDD’s arms
If the clusters of a file are distributed over the HDD, the heads need to
perform more time-consuming position changes when accessing the file
For SSDs the position of the clusters is irrelevant for the latency

Image source: http://windowsitpro.com Image source: http://www.teknobites.com Image s.: http://www.remosoftware.com
Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 47/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Defragmentation (1/3)

These questions are frequently asked:
Why is it for Linux/UNIX not common to defragment?
Does fragmentation occur with Linux/UNIX?
Is it possible to defragment with Linux/UNIX?

First of all, we need to answer: What do we want to achieve with
defragmentation?

Writing data to a drive, always leads to fragmentation
The data is no longer contiguously arranged

A continuous arrangement would maximize the continuous forward
reading of the data because no more seek times occur
Only if the seek times are huge, defragmentation makes sense

With operating systems, which use only a little amount of main memory
for caching HDD accesses, high seek times are very negative

Discovery 1: Defragmentation accelerates mainly the continuous forward reading

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 48/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Defragmentation (2/3)
Single-tasking operating systems (e.g. MS-DOS)

Only a single application can be executed
If this application often hangs, because it waits for the results of
read/write requests, this causes a poor system performance

Discovery 2: Defragmentation may be useful for single-tasking operating systems.
In practice, however, single-tasking operating systems are seldom used

Multitasking operating systems
Multiple programs are executed at the same time

Applications can almost never read large amounts of data in a row
without other applications in between requesting r/w operations

In order to prevent programs, which are executed at the same time,
from interfering with each other, operating systems read more data
than is requested

The system reads a stock of data into the cache, even if no requests for
these data exist

Discovery 3: In multitasking operating systems, applications can almost never read large amounts
of data in a row
Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 49/50

File System Fundamentals Block Addressing File Allocation Tables Journal Extents COW Cache Defragmentation

Defragmentation (3/3)

Linux systems automatically hold data in the cache, which is frequently
accessed by the processes

The impact of the cache greatly exceeds the short-term benefits,
which can be achieved by defragmentation

Discovery 4: Defragmenting has mainly a benchmark effect
Discovery 5: Enlarge the file system cache brings better results than defragmentation

Defragmenting has mainly a benchmark effect
In practice, defragmentation (in Linux!) causes almost no positive impact
Tools like defragfs can be used for Linux file system defragmentation

Using these tools is often not recommended or useful

Helpful source of information: http://www.thomas-krenn.com/de/wiki/Linux_Page_Cache

Prof. Dr. Christian Baun – 6th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 50/50

http://www.thomas-krenn.com/de/wiki/Linux_Page_Cache

	File System Fundamentals
	Functions of File Systems
	Technical Principles of File Systems
	Basic Terminology of Linux File Systems

	Block Addressing
	Block Addressing using the Example ext2/3
	Minix
	Minix File System Structure
	ext2/3/4 File System Structure
	ext2/3/4 Block Group Structure
	Analyze File Systems

	File Allocation Tables
	File Allocation Table (FAT)
	FAT File System Structure
	Root Directory and FAT
	Structure of Root Directory Entries
	Risk of File System Inconsistencies
	FAT12
	FAT16
	VFAT
	Compatibility with MS-DOS and Windows up to v3.11
	Analyze FAT File Systems

	Journal
	Problem: Write Operations
	Journaling File Systems
	Metadata Journaling and Full Journaling
	Compromise between the Variants: Ordered Journaling

	Extents
	Problem: Metadata Overhead
	Extent-based Addressing
	NTFS
	Structure of NTFS

	COW
	Most advanced Concept: Copy-on-write

	Cache
	Accelerating Data Access with a Cache

	Defragmentation
	Fragmentation
	Reasons for Defragmentation

