4th Slide Set Operating Systems

Prof. Dr. Christian Baun

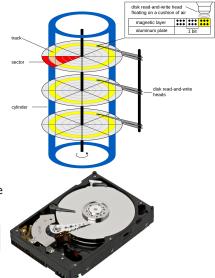
Frankfurt University of Applied Sciences (1971–2014: Fachhochschule Frankfurt am Main) Faculty of Computer Science and Engineering christianbaun@fb2.fra-uas.de

Learning Objectives of this Slide Set

• At the end of this slide set, you know/understand...

- the structure, functioning and characteristics of Hard Disk Drives
- the structure, functioning and characteristics of Solid State Drives
- the functioning and the most commonly implemented variants of Redundant Array of Independent Disks (**RAID**)

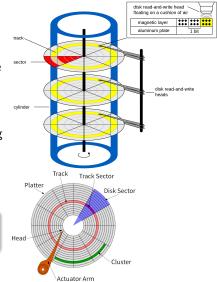
By knowing how HDDs and SSDs work, you will also understand better how file systems (\implies slide set 6) work and their design principles


Hard Disk Drives

- HDDs are approx. 100 times less expensive per bit versus main memory and they offer approx. 100 times more capacity
 - Drawback: Accessing data on HDDs is approx. 1000 times slower
- Reason for the poorer access time:
 - HDDs are mechanical devices
 - They contain one or more discs, rotating with 4200, 5400, 7200, 10800, or 15000 revolutions per minute (RPM)
- For each side of each disc (platter), an arm exists with a read-and-write head
 - The read-and-write head is used to detect and modify the magnetization of the material
 - The distance between disk and head is approx. 20 nanometers
- Also, HDDs have a cache (usually \leq 32 MB)
 - This cache buffers read and write operations

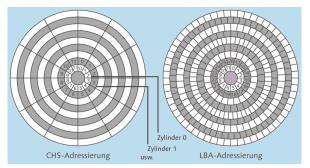
Logical Structure of Hard Disk Drives (1/2)

- The surfaces of the **platters** (disks) are magnetized in circular **tracks** by the heads
- All tracks on all disks at a specific arm position are part of a **cylinder**
- The tracks are divided into logical units (segments of a circle), which are called **blocks** or **sectors**
 - Typically, a sector contains 512 bytes payload
 - Sectors are the smallest addressable units of HDDs


Image source (structure): Henry Mühlpfordt. Wikimedia (CC-BY-SA-1.0) Image source (HDD): purepng.com (CC0)

Logical Structure of Hard Disk Drives (2/2)

- If data needs to be modified, the entire sector must be read and rewritten
- Today, **clusters** are addressed by the software (see slide set 6)
 - Clusters are groups of sectors with a fixed size, e.g. 4 or 8 kB
 - In file systems of modern operating systems, clusters are the smallest addressable unit of HDDs


Image source (structure): Henry Mühlpfordt. Wikimedia (CC-BY-SA-1.0) Image source (platter): Tim Bielawa. The Linux Sysadmins Guide to Virtual Disks (CC-BY-SA-4.0)

Addressing Data on Hard Disk Drives

- HDDs with a capacity \leq 8 GB use the *Cylinder-Head-Sector addressing*
- CHS faces several limitations:
 - The Parallel ATA interface and the BIOS offer just...
 - 16 bits for the cylinders (up to 65,536)
 - 8 bits for the heads (up to 255. Head number 0 is not used)
 - 8 bits for the sectors/track (up to 255. Sector number 0 is not used)
- \bullet \leq 7.844 GB can be addressed this way
- 1024 cylinders * 255 heads * 63 sectors/track * 512 bytes/sector = 8,422,686,720 bytes
- 8,422,686,720 bytes / 1024 / 1024 / 1024 = 7.844 GB
- No 2.5" or 3.5" HDD contains > 16 heads!!!
 - Logical heads were used
- HDDs with a capacity > 7.844 GB use Logical Block Addressing (LBA)
 - All sectors are numbered consecutively beginning with 0

Logical Block Addressing (LBA)

IT-Handbuch für Fachinformatiker. Sascha Kersken. 6th edition. Rheinwerk Verlag

- When CHS addressing is used, all tracks contain the same number of sectors
 - Each sector stores 512 bytes of payload
- Drawback: **Storage capacity is wasted**, because the data density decreases from the inner tracks to the outer tracks
- When LBA is implemented, this drawback does not exist

Hard	Disk	Drives	(HDD)
	000		

Required Time to access Data on HDDs

- The access time is an important performance factor
- 2 factors influence the access time of HDDs
 - Average Seek Time
 - The time that it takes for the arm to reach a desired track
 - Is for modern HDDs between 5 and 15 ms

Average Rotational Latency Time

- Delay of the rotational speed, until the required disk sector is located under the head
- Depends entirely on the rotational speed of the disks
- Is for modern HDDs between 2 and 7.1 ms

Average Rot. Lat. Time [ms] =
$$\frac{1000 \frac{[ms]}{[sec]} \times 60 \frac{[sec]}{[min]} \times 0.5}{\frac{revolutions}{[min]}} = \frac{30,000 \frac{[ms]}{[min]}}{\frac{revolutions}{[min]}}$$

Why does the equation contain 0.5 ?

Once the head has reached the right track, on average a half rotation of the disk must be waited for the correct sector to be under the head \implies Average Rotational Latency Time = half Rotational Latency Time

- Are sometimes falsely called Solid State Disks
- Do not contain moving parts
- Benefits:
 - Fast access time
 - Low power consumption
 - No noise generation
 - Mechanical robustness
 - Low weight
 - The location of data does not matter ⇒ defragmenting makes no sense

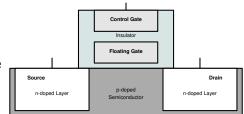
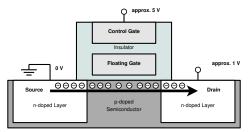

Image (SSD): Thomas Springer. Wikimedia (CC0)

Image (HDD): Own work

- Drawbacks:
 - Higher price compared with HDDs of the same capacity
 - Secure delete or overwrite is hard to implement
 - Limited number of program/erase cycles

Functioning of Flash Memory

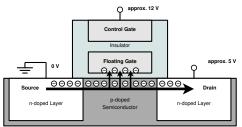
- Data is stored as electrical charges
- In contrast to main memory, no electricity is required to keep the data


- Each flash memory cell is a transistor and has 3 connectors
 - Gate = control electrode
 - Drain = electrode
 - Source = electrode
- The floating gate stores electrons (data)
 - Completely surrounded by an insulator
 - Electrical charge remains stable for years

Well written explanation about the functioning of flash memory

Benjamin Benz. Die Technik der Flash-Speicherkarten. c't 23/2006

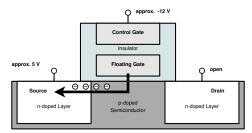
Reading Data from Flash Memory Cells


- A positively doped (p) semiconductor separates the 2 negatively doped (n) electrodes drain and source
 - Equal to a npn transistor, the npn passage is not conductive without a base current

- Above a certain positive voltage (5V) at the gate (**threshold**) a n-type channel is created in the p-area
 - Current can flow between source and drain through this channel
- If the floating gate contains electrons, the threshold is different
 - A higher positive voltage at the gate is required, so that current can flow between source and drain
 - This way the stored value of the flash memory cell is read out

Writing Data into Flash Memory Cells

 Data is stored inside flash memory cells by using
 Fowler-Nordheim tunneling


- A positive voltage (5V) is applied to the control gate
 - As a result, electrons can flow between source and drain
- If the high positive voltage is sufficiently high (6 to 20V), some electrons are tunneled (⇒ Fowler-Nordheim tunneling) through the insulator into the floating gate
- This method is also called Channel Hot Electron Injection

Recommended Source

Flash memory. Alex Paikin. 2004. http://www.hitequest.com/Kiss/Flash_terms.htm

Erasing Data in Flash Memory Cells

- For erasing a flash memory cell, a negative voltage (-6 to -20V) is applied at the control gate
 - As a result, electrons are tunneled in the reverse direction from the floating gate

- The insulating layer, which surrounds the floating gate, suffers from each erase cycle
 - At some point the insulating layer is no longer sufficient to hold the charge in the floating gate
 - For this reason, flash memory survives only a limited number of program/erase cycles

Functioning of Flash Memory

- Memory cells are connected to **blocks** and (depending on the structure also in) **pages**
 - A block always contains a fixed number of pages
 - Write/erase operations can only be carried out for entire pages or blocks Write and erase operations are more complex than read operations
 - If data in a page needs to be modified, the entire block must be erased
 - To do this, the block is copied into a buffer memory (cache)
 - Inside the cache, the data is modified
 - I Next, the block is erased from the flash memory
 - In ally, the modified block is written into the flash memory
- 2 types of flash memory exist:
 - NOR memory (just blocks)
 - NAND memory (blocks and pages)

The circuit symbol indicates the way, the memory cells are connected

This influences the capacity and access time (latency)

NOR Memory

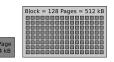
- Each memory cell has its own data line
 - Benefit:
 - Random access for read and write operations
 Better latency compared with NAND memory
 - Drawback:
 - More complex (\Longrightarrow expensive) construction
 - Higher power consumption than NAND memory
 - Typically small capacities (\leq 32 MB)
- Does not contain pages
 - The memory cells are grouped together into blocks
 - Typical block sizes: 64, 128 or 256 kB
- No random access for erase operations
 - Erase operations can only be done for entire blocks

Fields of application

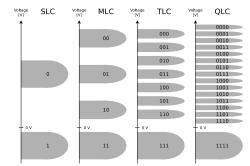
Industrial environment (e.g. automotive), storing the firmware of a computer system

NOR flash memory (top image) on the IPhone 3G mainboard (bottom image)

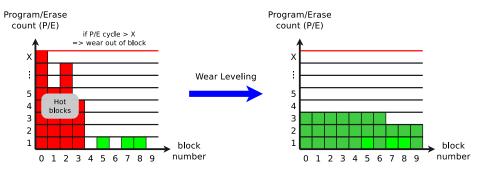
Images: Raimond Spekking. Wikimedia (CC-BY-SA-4.0)


NAND Memory

- The memory cells are grouped into pages
 - Typical page size: 512-8192 bytes
 - Each page has its own data line
 - Each block consists of a number of pages
 - Typical block sizes: 32, 64, 128 or 256 pages
- Benefit:
 - Lesser data lines \implies requires < 50% of the surface area of NOR memory
 - Lower manufacturing costs compared with NOR flash memory
- Drawback:
 - No random access \implies Poorer latency compared with NOR memory
 - Read and write operations can only be carried out for entire pages
 - Erase operations can only be carried out for entire blocks


16/31

Single/Multi/Triple/Quad-Level Cell


- 4 types of NAND flash memory exist
 - QLC memory cells store 4 bits
 - TLC memory cells store 3 bits
 - MLC memory cells store 2 bits
 - SLC memory cells store 1 bit
- SLC storage...
 - is most expensive
 - provides the best write speed
 - survives most program/erase cycles

- SLC memory survives approx. 100,000 300,000 program/erase cycles
- MLC memory survives approx. 10,000 program/erase cycles
- TLC and QLC memory survives approx. 1,000 program/erase cycles
- Also memory cells exist, which survive millions of program/erase cycles

Hard Dis	sk E)rives	(HDD)

Wear Leveling

- Wear leveling algorithms evenly distribute write operations
- File systems, which are designed for flash memory, and therefore minimize write operations, are e.g. JFFS, JFFS2, YAFFS and LogFS
 - JFFS contains its own wear leveling algorithm
 - This is often required in embedded systems, where flash memory is directly connected

Latency of Hard Disk Drives

• The performance of CPUs, cache and main memory is growing faster than the data access time (*latency*) of HDDs:

HDDs

1973: IBM 3340, 30 MB capacity, 30 ms data access time 1989: Maxtor LXTI00S, 96 MB capacity, 29 ms data access time 1998: IBM DHEA-36481, 6 GB capacity, 16 ms data access time 2006: Maxtor STM320820A, 320 GB capacity, 14 ms data access time 2011: Western Digital WD30EZRSDTL, 3 TB capacity, 8 ms data access time 2018: Seagate BarraCuda Pro ST14000DM001, 14 TB capacity, 4-5 ms data access time

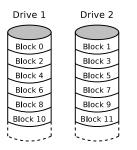
CPUs

1971: Intel 4004, 740 KHz clock speed 1989: Intel 486DX, 25 Mhz clock speed 1997: AMD K6-2, 550 Mhz clock speed 2007: AMD Opteron Santa Rosa F3, 2.8 GHz clock speed 2010: Intel Core i7 980X Extreme (6 Cores), 3.33 GHz clock speed 2018: AMD Ryzen Threadripper 2990WX (32 Cores), 3 GHz clock speed 2020: AMD Ryzen Threadripper 3990X (64 Cores), 2.9 GHz clock speed

• The latency of **SSDs** is $\leq 1\,\mu { m s} \Longrightarrow pprox$ factor 100 better than HDDs

- But the gap grows because of interface limitations and multiple CPU cores
- Further challenge
 - Storage drives can fail \Longrightarrow risk of data loss
- Enhance latency and reliability of HDDs and SSDs \Longrightarrow RAID

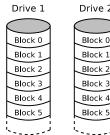
Prof. Dr. Christian Baun - 4th Slide Set Operating Systems - Frankfurt University of Applied Sciences - WS2425


Redundant Array of independent Disks (RAID)

- The performance of the HDDs cannot not be improved infinitely
 - HDDs contain moving parts
 - Physical boundaries must be accepted
- One way to avoid the given limitations in terms of speed, capacity and reliability, is the parallel use of multiple components
- A RAID consists of multiple drives (HDDs or SSDs)
 - For users and their processes, a RAID behaves like a single large drive
- Data is distributed across the drives of a RAID system
 - The RAID level specifies how the data is distributed
 - $\bullet\,$ The most commonly used RAID levels are RAID 0, RAID 1 and RAID 5 $\,$

Patterson, David A., Garth Gibson, and Randy H. Katz, A Case for Redundant Arrays of Inexpensive Disks (RAID), Vol. 17. No. 3, ACM (1988)

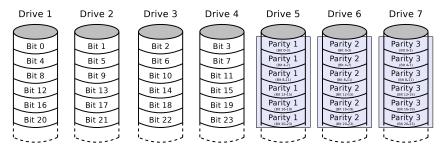
RAID 0 – Striping – Acceleration without Redundancy


- No redundancy
 - Increases only the data rate
- Drives are partitioned into blocks of equal size
- If read/write operations are big enough (> 4 or 8 kB), the operations can be carried out in parallel on multiple drives or on all drives

- In the event of a drive failure, not the entire data can be reconstructed
 - Only small files, which are stored entirely on the remaining drives, can be reconstructed (in theory)
- RAID 0 should only be used when security is irrelevant or backups are created at regular intervals

RAID 1 – Mirroring

- At least 2 drives of the same capacity store identical data
 - If the drives are of different sizes, RAID 1 provides only the capacity of the smallest drive
- Failure of a single drive does not cause any data loss
 - Reason: The remaining drives store the identical data
- A total loss occurs only in case of the failure of all drives

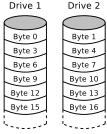


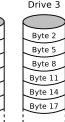
Drive 2

- Any change of data is written on all drives
- Not a backup replacement
 - Corrupted file operations or virus attacks take place on all drives
- The read performance can be increased by intelligent distribution of requests to the attached drives

RAID 2 – Bit-Level Striping with Hamming Code Error Correction

- Each sequential bit is stored on a different drive
 - $\bullet\,$ Bits, which are powers of 2 (1, 2, 4, 8, 16, etc.) are parity bits

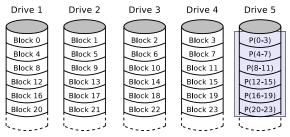



- The individual parity bits are distributed over multiple drives
 increases the throughput
- Was used only in mainframes
 - Is no longer relevant

RAID

RAID 3 – Byte-level Striping with Parity Information

• Parity information is stored on a dedicated parity drive

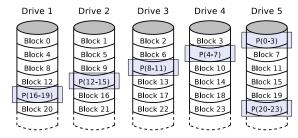


- Each write operation on the RAID causes write operations on the dedicated parity drive
 ⇒ bottleneck
- Was replaced by RAID 5

Payload drives	Payload drives Sum			even/odd		Parity drive
Bits are $0 + 0 + 0$	\implies	0	\implies	Sum is even	\implies	Sum bit 0
Bits are $1 + 0 + 0$	\implies	1	\implies	Sum is odd	\implies	Sum bit 1
Bits are $1 + 1 + 0$	\implies	2	\implies	Sum is even	\implies	Sum bit 0
Bits are $1+1+1$	\implies	3	\implies	Sum is odd	\implies	Sum bit 1
Bits are $1 + 0 + 1$	\implies	2	\implies	Sum is even	\implies	Sum bit 0
Bits are $0+1+1$	\implies	2	\implies	Sum is even	\implies	Sum bit 0
Bits are $0 + 1 + 0$	\implies	1	\implies	Sum is odd	\implies	Sum bit 1
Bits are $0 + 0 + 1$	\implies	1	\implies	Sum is odd	\implies	Sum bit 1

RAID 4 – Block-level Striping with Parity Information

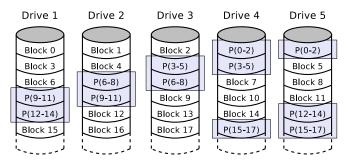
- Parity information is stored at a dedicated parity drive
- Difference to RAID 3:
 - $\bullet\,$ Not individual bits or bytes, but blocks $({\bf chunks})$ are stored


- Each write operation on the RAID causes write operations on the dedicated parity drive
 - Drawbacks:
 - Bottleneck
 - Dedicated parity drive fails more frequently

P(16-19) = Block 16 XOR Block 17 XOR Block 18 XOR Block 19

- Seldom implemented, because RAID 5 does not face these drawbacks
- The company NetApp implements RAID 4 in their NAS servers
 - e.g. NetApp FAS2020, FAS2050, FAS3040, FAS3140, FAS6080

RAID 5 - Block-level Striping with distributed Parity Information


- Payload and parity information are distributed to all drives
- Benefits:
 - High throughput
 - High security level against data loss
 - No bottleneck

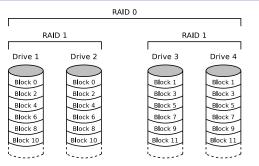
P(16-19) = block 16 XOR block 17 XOR block 18 XOR block 19

RAID 6 – Block-level Striping with double distributed Parity Information

- Functioning is similar to RAID 5
 - But it can handle the simultaneous failure of up to 2 drives
- In contrast to RAID 5...
 - the availability is better, but the write performance is lower
 - the effort to write the parity information is higher

Summary of the RAID Levels

If you want...


the best performance and don't care about availability \Longrightarrow RAID 0 the best availability and don't care about performance \Rightarrow RAID 1 a combination of performance and availability \Longrightarrow RAID 5 or RAID 6

RAID	n (number of drives)	<i>k</i> (net capacity)	Allowed to fail	Performance (read)	Performance (write)
0	≥ 2	п	0 (none)	n * X	n * X
1	≥ 2	1	n-1 drives	n * X	X
2	\geq 3	n – [log ₂ n]	1 drive	variable	variable
3	\geq 3	n-1	1 drive	(n - 1) * X	(n - 1) * X
4	\geq 3	n-1	1 drive	(n-1) * X	(n-1) * X
5	\geq 3	n-1	1 drive	(n-1) * X	(n-1) * X
6	\geq 4	<i>n</i> – 2	2 drives	(n-2) * X	(n-2) * X

- X is the performance of a single drive during read or write
- The maximum possible performance in theory is often limited by the controller and the computing power of the CPU

If the drives of a RAID 1 have different capacities, the net capacity of a RAID 1 is equal to the capacity of its smallest drive

RAID Combinations

- Usually RAID 0, 1 or 5 is used
- In addition to the popular RAID levels, several RAID combinations exist
 - At least 2 RAIDs are combined to a bigger RAID

Examples

- RAID 00: Multiple RAID 0 are connected to a RAID 0
- RAID 01: Multiple RAID 0 are connected to a RAID 1
- RAID 05: Multiple RAID 0 are connected to a RAID 5
- RAID 10: Multiple RAID 1 are connected to a RAID 0 (see figure)
- RAID 15: Multiple RAID 1 are connected to a RAID 5
- RAID 50: Multiple RAID 5 are connected to a RAID 0
- RAID 51: Multiple RAID 5 are connected to a RAID 1

Hardware / Host / Software RAID (1/2)

Image Source: Adaptec

Adaptec SATA RAID 2410SA

Adaptec SATA II RAID 1220SA

Hardware RAID

- A RAID controller with a processor does the calculation of the parity information and monitors the state of the RAID
- Benefit: Operating system independent No additional CPU load Drawback: High price (approx. € 200)

• Host RAID

- Either an inexpensive RAID controller or the chipset provide the RAID functionality
- Usually only supports RAID 0 and RAID 1

 Benefit:
 Operating system independent

 Low price (approx. € 50)

 Drawback:
 Additional CPU load

 Possible dependence of rare hardware

Hardware / Host / Software RAID (2/2)

Software RAID

• Linux, Windows and MacOS allow to connect drives to a RAID without a RAID controller

Benefit: No cost for additional hardware Drawback: Operating system dependent Additional CPU load

- Example: Create a RAID 1 (md0) with the partitions sda1 and sdb1: mdadm --create /dev/md0 --auto md --level=1 --raid-devices=2 /dev/sda1 /dev/sdb1
- Obtain information about any software RAID in the system: cat /proc/mdstat
- Obtain information about a specific software RAID (md0): mdadm --detail /dev/md0
- Remove partition sdb1 and add partition sdc1 to the RAID: mdadm /dev/md0 --remove /dev/sdb1 mdadm /dev/md0 --add /dev/sdc1