
Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

2nd Slide Set
Operating Systems

Prof. Dr. Christian Baun

Frankfurt University of Applied Sciences
(1971–2014: Fachhochschule Frankfurt am Main)

Faculty of Computer Science and Engineering
christianbaun@fb2.fra-uas.de

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 1/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Learning Objectives of this Slide Set

Operating systems can be classified according to different criteria
The most important distinction criteria are discussed in this slide set

At the end of this slide set, you know/understand. . .
the difference between singletasking and multitasking
the difference between single-user and multi-user
the reason for the memory address length
what real-time operating systems are
what distributed operating systems are
the different kernel architectures

Monolithic kernel, Microkernel, Hybrid kernel
the structure (layers) of operating systems

what the steps of the boot process (bootstrap) are

Exercise sheet 2 repeats the contents of this slide set which are relevant for these learning
objectives

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 2/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Singletasking and Multitasking

Singletasking
At any given moment, only a single program is executed
Multiple started programs are executed one after the other

Multitasking
Multiple programs can be
executed at the same time
(with multiple CPUs/Cores)
or quasi-parallel

Task, process, job,. . .

The term task is equivalent to process or from the user’s point of view, job

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 3/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Why Multitasking?

We already know. . .

With multitasking, multiple processes are executed concurrently
The processes are activated alternately at short intervals
=⇒ For this reason, the execution appears simultaneous
Drawback: Switching from one process to another one causes overhead

Processes often need to wait for external events
External events may be user inputs, input/output operations of peripheral
devices, or simply waiting for a message from another program
With multi-tasking, processes which wait for incoming e-mails, successful
database operations, data written to the HDD, or something similar can
be placed in the background

This way, other processes can be executed sooner
The program switching, which is required to implement the
quasi-parallel execution, causes overhead

The overhead is rather small compared with the speedup

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 4/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Single-user and Multi-user

Single-User
The computer can only be used by a single user at any point in time

Multi-User
Multiple users can work simultaneously with the computer

Users share the system resources (as fair as possible)
Users must be identified (via passwords)
Access to data/processes of other users must be prevented

Single-User Multi-User
Singletasking MS-DOS, Palm OS —
Multitasking OS/2, Windows 3x/95/98, BeOS, Linux/UNIX, MacOS X, Server

MacOS 8x/9x, AmigaOS, Risc OS editions of the Windows NT family

Desktop/Workstation versions of Windows NT/XP/Vista/7/8/10/11
are only half multi-user operating systems

Different users can work with the system only one after the other, but the
data and processes of the different users are protected from each other

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 5/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

8/16/32/64 bit Operating Systems
The bit number indicates the memory address length, with which the
operating system works internally

The number of memory units, an operating system can address, is limited
by the address space, which is limited by the address bus =⇒ slide set 3

8 bit operating systems can address 28 memory units
e.g. GEOS, Atari DOS, Contiki

16 bit operating systems can address 216 memory units
e.g. MS-DOS, Windows 3.x, OS/2 1.x

Bill Gates (1989)

“We will never make a 32-bit operating system.”

32 bit operating systems can address 232 memory units
e.g. Windows 95/98/NT/Vista/7/8/10, OS/2 2/3/4, eComStation,
Linux, BeOS, MacOS X (until 10.7)

64 bit operating systems can address 264 memory units
e.g. Linux (64 bit), Windows 7/8 (64 bit), MacOS X (64 bit)

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 6/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Real-Time Operating Systems

Are multitasking operating systems with additional real-time functions
for the compliance of time conditions
Essential criteria of real-time operating systems:

Response time
Meet deadlines

Different priorities are taken into account so that important processes
are executed within certain time limits
2 types of real-time operating systems exist:

Hard real-time operating systems
Soft real-time operating systems

Modern desktop operating systems can guarantee soft real-time
behavior for processes with high priority

Because of the unpredictable time behavior due to swapping, hardware
interrupts, etc. hard real-time behavior cannot be guaranteed

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 7/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Hard and Soft Real-Time Operating Systems

Hard real-time operating systems
Deadlines must be strictly met
Delays cannot be accepted under any circumstances
Delays lead to disastrous consequences and high cost
Results are useless if they are achieved too late
Application examples: Welding robot, reactor control, Anti-lock braking
system (ABS), aircraft flight control, monitoring systems of an intensive
care unit

Soft real-time operating systems
Certain tolerances are allowed
Delays cause acceptable costs
Typical applications: Telephone system, parking ticket vending machine,
ticket machine, multimedia applications such as audio/video on demand

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 8/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Application Areas of Real-Time Operating Systems

Typical application areas of
real-time operating systems:

Cell phones
Industrial monitoring systems
Robots

Examples of real-time operating
systems:

QNX
VxWorks
LynxOS
RTLinux
Symbian (outdated)
Windows CE (outdated)

Image source: BMW Werk Leipzig (CC-BY-SA 2.0)

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 9/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Have some Fun with the QNX Demo Disc from 1999. . .

Image source:
http://toastytech.com/guis/qnxdemo.html

Impressive video of the demo disc:
https://www.youtube.com/watch?v=K_VlI6IBEJ0

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 10/42

http://toastytech.com/guis/qnxdemo.html
https://www.youtube.com/watch?v=K_VlI6IBEJ0


Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Distributed Operating Systems

Distributed system
Controls processes on multiple computers of a cluster
The individual computers remain transparently hidden from the users
and their applications

The system appears as a single large computer
Single System Image principle

The principle of distributed operating
systems is dead!
However, during the development of some
distributed operating systems some
interesting technologies have been
developed and applied for the first time
Some of these technologies are still
relevant today

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 11/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Distributed Operating Systems (1/3)
Amoeba

Mid-1980s to mid-1990s
Andrew S. Tanenbaum (Free University of Amsterdam)
The programming language Python was developed for Amoeba

http://www.cs.vu.nl/pub/amoeba/

The Amoeba Distributed Operating System. A. S. Tanenbaum, G. J. Sharp. http://www.cs.vu.nl/pub/amoeba/Intro.pdf

Inferno
Based on the UNIX operating system Plan 9
Bell Laboratories
Applications are programmed in the programming language Limbo

Similar to Java, Limbo produces bytecode, which is executed by a virtual
machine

Minimal hardware requirements
Requires only 1 MB of main memory

http://www.vitanuova.com/inferno/index.html

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 12/42

http://www.cs.vu.nl/pub/amoeba/
http://www.cs.vu.nl/pub/amoeba/Intro.pdf
http://www.vitanuova.com/inferno/index.html


Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Distributed Operating Systems (2/3)

Rainbow
Universität Ulm
Concept of a common memory to implement an uniform address space,
in which all computers in the cluster can store and access objects

For applications, it is transparent, on which computer in the cluster,
objects are physically located
Applications can access desired objects via uniform addresses from any
computer
If the object is physically located in the memory of a remote computer,
Rainbow does the transmission and local deployment to the requesting
computer in an automated and transparent way

Rainbow OS: A distributed STM for in-memory data clusters. Thilo Schmitt, Nico Kämmer, Patrick Schmidt, Alexander Weggerle,
Steffen Gerhold, Peter Schulthess. MIPRO 2011

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 13/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Distributed Operating Systems (3/3)

Sprite
University of California, Berkeley (1984-1994)
Connects workstations in a way that they appear to users as a single
time-shared system
The parallel version of make, called pmake was developed for Sprite

http://www.stanford.edu/~ouster/cgi-bin/spriteRetrospective.php

The Sprite Network Operating System. 1988. http://www.research.ibm.com/people/f/fdouglis/papers/sprite.pdf

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 14/42

http://www.stanford.edu/~ouster/cgi-bin/spriteRetrospective.php
http://www.research.ibm.com/people/f/fdouglis/papers/sprite.pdf


Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Distributed Operating Systems – Situation Today

The concept did not gain acceptance
Distributed operating systems never left research projects state
Established operating systems have never been replaced

For developing cluster applications, libraries
exist, which provide hardware-independent
message passing

Message passing communication is based
on message exchange
Popular message passing systems:

Message Passing Interface (MPI)
=⇒ standard solution
Parallel Virtual Machine (PVM)
=⇒ d

MPI tutorials

http://mpitutorial.com/tutorials/

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 15/42

http://mpitutorial.com/tutorials/


Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Kernel Architectures

The kernel. . .
contains the essential
functions of the operating
system and
is the interface to the
hardware

Different kernel architectures exist
They differ in which functions are inside the kernel and which functions
are outside the kernel as services (servers)

Functions in the kernel have full hardware access (kernel mode)
Functions outside the kernel can only access their virtual memory (user
mode)
=⇒ slide set 5

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 16/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Monolithic Kernels (1/2)

Contain functions for. . .
memory management
process management
interprocess communication
hardware management
(drivers)
file systems

Advantages:
Fewer context switching as with microkernels =⇒ better performance
Grown stability

Microkernels are usually not more stable compared with monolithic kernels
Drawbacks:

Crashed kernel components can not be restarted separately and may
cause the entire system to crash
Kernel extensions cause a high development effort, because for each
compilation of the extension, the complete kernel needs to be recompiled

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 17/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Monolithic Kernels (2/2)

Linux is the most popular
modern operating system with a
monolithic kernel
It is possible to outsource drivers
of the Linux kernel into
modules

However, the modules are
executed in kernel mode and
not in the user mode

Therefore, the Linux kernel
is a monolithic kernel

Examples of operating systems with monolithic kernels

Linux, BSD, MS-DOS, FreeDOS, Windows 95/98/ME, MacOS (until 8.6), OS/2

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 18/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Microkernels (1/2)

The kernel contains only. . .
essential functions for memory
management and process
management
functions for process
synchronization and
interprocess communication
essential drivers (e.g. for
system start)

Device drivers, file systems, and services (servers) are located outside
the kernel and run equal to the user applications in user mode

Examples of operating systems with microkernels

AmigaOS, MorphOS, Tru64, QNX Neutrino, Symbian OS, GNU HURD (see slide 24)

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 19/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Microkernels (2/2)

Advantages:
Components can be
exchanged easily
Best stability and security in
theory

Reason: Fewer functions
run in kernel mode

Drawbacks:
Slower because of more context switches
Development of a new (micro)kernel is a complex task

The success of the micro-kernel systems, which was forecasted in the early 1990s, did not happen
=⇒ Discussion of Linus Torvalds vs. Andrew S. Tanenbaum (1992) =⇒ see slide 23

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 20/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Kernel-Architectures of Real-Time Operating Systems
Thin kernel (similar to a Microkernel)

The operating system kernel itself runs as a
process with lowest priority in the background
The RT kernel does the scheduling

It is an abstraction interface between
hardware and Linux kernel

Real-time processes have the highest priority
=⇒ minimum reaction time (latency)

Nano kernel (similar to a Microkernel too)
In addition to the RT kernel, several kernels of
other operating systems may be executed
A nano kernel is similar to a Type-1-Hypervisor
(=⇒ slide set 10)

Pico kernel, Femto kernel, Atto kernel
Marketing buzz-words to emphasize the smallness of RT kernels

Source: Anatomy of real-time Linux architectures (2008): http://www.ibm.com/developerworks/library/l-real-time-linux/

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 21/42

http://www.ibm.com/developerworks/library/l-real-time-linux/


Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Hybrid Kernels / Macrokernels
Tradeoff between monolithic kernels and microkernels

They contain some components for performance reasons, which are never
located inside microkernels

It is not specified which additional components are located inside hybrid
kernels
Windows NT 4 indicates advantages and drawbacks of hybrid kernels

The kernel of Windows NT 4 contains the Graphics Device Interface
Advantage: Increased performance
Drawback: Buggy graphics drivers cause frequent crashes

Source: MS Windows NT Kernel-mode User and GDI White Paper. https://technet.microsoft.com/library/cc750820.aspx

Advantage:
Better performance as with microkernels because fewer context switching
The stability is (theoretically) better as with monolithic kernels

Examples of operating systems with hybrid kernels

Windows NT family since NT 3.1, ReactOS, MacOS X, BeOS, ZETA, Haiku, Plan 9, DragonFly BSD

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 22/42

https://technet.microsoft.com/library/cc750820.aspx


Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Linus Torvalds vs. Andrew Tanenbaum (1992) Image Source: unknown

August 26th 1991: Linus Torvalds announces the Linux
project in the newsgroup comp.os.minix

September 17th 1991: First internal release (0.01)
October 5th 1991: First official release (0.02)

29. Januar 1992: Andrew S. Tanenbaum posts in the Newsgroup
comp.os.minix: “LINUX is obsolete”

Linux has a monolithic kernel =⇒ step backwards
Linux is not portable, because it is optimized for the 80386 CPU and this
architecture will soon be replaced by RISC CPUs (fail!)

This was followed by an intense and emotional several-day discussion about the advantages and
drawbacks of monolithic kernel, microkernels, software portability and free software

A. Tanenbaum (30. January 1992): “I still maintain the point that designing a monolithic kernel in
1991 is a fundamental error. Be thankful you are not my student. You would not get a high grade
for such a design :-)”. Source: http://www.oreilly.com/openbook/opensources/book/appa.html

The future can not be predicted

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 23/42

http://www.oreilly.com/openbook/opensources/book/appa.html


Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

A sad Kernel Story – HURD

1984: Richard Stallman founds the GNU Project
Objective: Develop a free Unix operating system
=⇒ GNU HURD
GNU HURD system consists of:

GNU Mach, the microkernel
File systems, protocols, servers (services), which run in
user mode
GNU software, e.g. editors (GNU Emacs), compilers (GNU
Compiler Collection), shell (Bash),. . .

GNU HURD is so far complete
The GNU software is almost completed since the early
1990s
Not all servers are completely implemented

One component is still missing: The microkernel

Image source:
stallman.org

Wikipedia
(CC-BY-SA-2.0)

Wikipedia
(CC-BY-SA-3.0)

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 24/42

stallman.org


Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

An extreme Kernel Story – kHTTPd http://www.fenrus.demon.nl

1999: Arjan van de Ven develops the kernel-based
web server kHTTPd for Linux kernel 2.4.x

The Design of kHTTPd: https://www.linux.it/~rubini/docs/khttpd/khttpd.html
Announce: kHTTPd 0.1.0: http://static.lwn.net/1999/0610/a/khttpd.html

Advantage: Faster delivery of static(!) web pages
Less switching between user mode and kernel mode is
required

Drawback: Security risk
Complex software like a web server should not run in
kernel mode
Bugs in the web server could cause system crashes or
enable an attacker to takeover system control

Linux kernel ≥ 2.6.x does not contain kHTTPd
Image source:
Kernel Plugins: When A VM
Is Too Much. Ivan Ganev,
Greg Eisenhauer, Karsten
Schwan. 2004

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 25/42

https://www.linux.it/~rubini/docs/khttpd/khttpd.html
http://static.lwn.net/1999/0610/a/khttpd.html


Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Structure (Layers) of Operating Systems (1/2)

Operating systems can be logically structured via layers
The layers surround each other
The layers contain more and more abstract functions from the inside out

The minimum is 3 layers:
The innermost layer contains the hardware-dependent parts of the
operating system

This layer allows to (theoretically!) easily port operating systems to
different computer architectures

The central layer contains basic input/output services (libraries and
interfaces) for devices and data
The outermost layer contains the applications and the user interface

Usually, operating systems are illustrated with more than 3 logical layers

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 26/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Structure (Layers) of Operating Systems (2/2)

Each layer is similar with an abstract machine
Layers communicate with neighboring layers via well-defined
interfaces
Layers can call functions of the next inside layer
Layers provide functions to the next outside layer
All functions (services), which are offered by a layer, and the rules,
which must be observed, are called protocol

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 27/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Layers of Linux/UNIX

In practice, the concept is not strictly followed all the time. User applications, can e.g. call wrapper function of the standard library
glibc or directly call the system calls (=⇒ see slide set 7)

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 28/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Topics of the Operating Systems Module

In this module, the contents of the layers are discussed
Layer 0 =⇒ Hardware: Slide sets 3+4
Layer 1 =⇒ Kernel architecture: Slide set 2
Layer 2 =⇒ Kernel functions: Slide sets 5+6+7+8+9
Layer 3 =⇒ Standard library: Slide sets 7+9
Layer 4 =⇒ Shell: Exercise sheets and examples on slide sets
Layer 5 =⇒ User: You :-)

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 29/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

Booting the Operating System

The process of starting a computer and its operating system is called
the boot process, or bootstrapping

It includes steps from initializing the computer’s hardware components to
handing over control to the operating system and its users or their
processes and providing a user interface

The individual steps of the boot process in Linux/UNIX operating
systems are:

1 power on the computer
2 start the firmware and perform a self-test
3 start the boot loader
4 start the operating system kernel and the temporary root file system
5 mount the real root file system
6 start init/systemd and the system processes
7 pass control to the users

The following slides describe the individual steps of the boot process

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 30/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

(1) Power on the Computer
In older computers (up to the 2000s), the mainboard is supplied with
power by switching on the computer and the processor starts the Von
Neumann Fetch-Decode-Execute cycle (=⇒ slide set 3)
In newer computers, an autonomous subsystem is usually
permanently running, such as:

Intel Management Engine (since 2008)
AMD Platform Security Processor (since 2013)
Such subsystems are independent microcontrollers on the mainboard or in
the chipset (=⇒ slide set 3) or alternatively special processor cores in the
main processor with their own operating system

They usually run whenever a sufficiently charged battery or a permanent
power source is present
They enable a computer to be monitored and woken up over the network
(Wake-on-LAN) and provide remote administration capabilities (remote
management)

Carikli D. (2018). The Intel Management Engine: an attack on computer users’ freedom. Free Software Foundation.
https://static.fsf.org/nosvn/blogs/Intel_ME_Carikli_article_PRINT_2.pdf

Ermolov M, Goryachy M. (2017). How to Hack a Turned-Off Computer, or Running Unsigned Code in Intel
Management Engine. Black Hat Europe. London

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 31/42

https://static.fsf.org/nosvn/blogs/Intel_ME_Carikli_article_PRINT_2.pdf


Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

(2) Start the Firmware and perform a Self-Test (1/2)

The firmware is started when the computer is switched on.
Older computers with x86-compatible processors from the early 1980s to
the late 2000s have a BIOS (Basic Input/Output System) as firmware.
Newer computers have a UEFI (Unified Extensible Firmware Interface).

BIOS of a Thinkpad X240 UEFI of an ASUS Z87-C

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 32/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

(2) Start the Firmware and perform a Self-Test (2/2)

The firmware. . .
performs the POST (power-on self-test)

During this procedure, the CPU, cache and main memory are tested for
correct functioning
The presence of hardware for graphical output, input/output devices and
storage drives is also checked

Status and error messages are indicated during the POST on the
monitor or by acoustic signals (beeps)

Most computers
can be equipped
with diagnostic
cards (POST
cards) to monitor
the self-test
process

POST card for PCI
Image source: Jahoe. Wikimedia (CC0)

POST card for PCI, PCIe and LPC
Image source: Markus Kuhn. Wikimedia

(CC0)

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 33/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

(3) Start the Boot Loader (1/4)

After the computer starts and the self-test is successful, the firmware
searches for the first boot device (boot drive)

The device order is defined by the user in the firmware or follows the
standard boot order
The boot device can be a drive (e.g. SSD, hard disk, USB memory stick)
or a network resource
(=⇒ PXE protocol = Preboot Execution Environment)

BIOS of a Thinkpad X240 UEFI of an ASUS Z87-C

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 34/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

(3) Start the Boot Loader (2/4)
The firmware starts the boot loader from the selected boot device

Dabei handelt es sich um ein Programm, das auf dem Bootlaufwerk liegt
The location of the boot loader on the boot device depends of the
partition scheme used

When using a classic PC partition table, the bootloader is stored in the
512 byte master boot record (MBR)
When using a GUID partition table (GPT), the bootloader is stored in the
ESP (EFI System Partition)

The MBR is not visible here! The ESP is visible here

Information about the MBR: https://knowitlikepro.com/understanding-master-boot-record-mbr/
Information about the ESP (P.117+118): https://uefi.org/sites/default/files/resources/UEFI%202_5.pdf

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 35/42

https://knowitlikepro.com/understanding-master-boot-record-mbr/
https://uefi.org/sites/default/files/resources/UEFI%202_5.pdf


Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

(3) Start the Boot Loader (3/4)

The firmware loads the boot loader from the boot device and writes it
to the main memory

Some boot loaders are: GRUB, Windows Boot Manager, Clover,. . .
Modern boot loaders such as GRUB and Clover allow users to start the
operating system with different parameters or in a safe mode
If there are several operating systems on the computer, modern boot
loaders also allow choosing one of these operating systems

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 36/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

(3) Start the Boot Loader (4/4)

GRUB even offers a command-line interpreter, the so-called GRUB shell
It provides information and command-line tools for repairing the boot
loader configuration from out of GRUB and for manually controlling the
boot process

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 37/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

(4) Start the Kernel and the temporary Root File System
If the user has selected an operating system or kernel either manually or
automatically using the boot loader, the boot loader unpacks the kernel
and writes it into the main memory.

In Linux, the kernel is typically a compressed file with the file name vmlinuz-<version>-<architecture> stored in the /boot
folder. In the Microsoft Windows NT family, the file is called Ntoskrnl.exe and is stored in the \Windows\System32 folder

Next, the boot loader loads the initial RAM disk (initrd) or the initial
RAM file system (initramfs) into the main memory

It is a temporary root file system loaded into the main memory
In Linux/UNIX, the root file system (root directory) is identified using a
forward slash (/)

The temporary root file system loaded by initrd or initramfs
implements a minimal Linux environment in the main memory
Its primary purpose is to provide the kernel further device drivers, drivers
for file systems and programs for mounting the real root file system of the
operating system into the main memory

In Linux operating systems, the initial RAM disk is typically stored as a compressed file in the /boot folder too and has the file
name initrd.img-<version>-<architecture>

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 38/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

(5) Mount the real Root File System

From within the temporary root file system, the kernel mounts the
drive (usually an SSD or HDD) with the real root file system

The kernel validates the consistency (correctness) of the root file system
and corrects any errors in the file system

After that, the kernel. . .
mounts the real root file system for replacing the temporary root file
system
mounts any other file systems that may be available (e.g. /home)

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 39/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

(6) Start init/systemd and the System Processes

After the kernel has been started and the root file system has been
mounted, the kernel starts init as the first user-mode process

The process init has the process ID 1
All other user-mode processes in the system descend from init
(=⇒ slide set 7)

In this phase of the boot process, numerous system processes and
services (cron daemon, SSH server, web server, etc.) are started
automatically

Until the end of the 2000s, Linux operating systems, like many other
UNIX operating systems, used an implementation of init in the style of
the System V standard, also called sysvinit
Since the beginning of the 2010s, most popular Linux distributions have
been using the advanced systemd

Benefits of systemd include a faster system start through starting system processes (services) in parallel, an integrated logging
system called journald for unified event logging and analysis, and the ability to automatically restart failed services

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 40/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

(7) Pass Control to the Users (1/2)
As the final step of the boot process, the kernel hands over control to
the users and their user-mode processes

The kernel continues to run in main memory in kernel mode
(=⇒ slide set 5) and manages the hardware resources and system calls
(=⇒ slide set 7)

This step also starts the getty processes
They provide a text-based login for users via one or more (virtual)
consoles

The operating system starts a separate instance of the getty process for
each of the virtual consoles (TTY1 to TTY6)

$ ps ax | grep getty
1533 tty1 Ss+ 0:00 /sbin/ agetty -o -p -- \u --noclear - linux

32078 tty2 Ss+ 0:00 /sbin/ agetty -o -p -- \u --noclear - linux
32095 tty3 Ss+ 0:00 /sbin/ agetty -o -p -- \u --noclear - linux
32098 tty4 Ss+ 0:00 /sbin/ agetty -o -p -- \u --noclear - linux
32100 tty5 Ss+ 0:00 /sbin/ agetty -o -p -- \u --noclear - linux
32102 tty6 Ss+ 0:00 /sbin/ agetty -o -p -- \u --noclear - linux
32510 pts /9 S+ 0:00 grep getty

Typical Linux systems have six virtual consoles, which can be accessed via the keys Ctrl+Alt+F1 to Ctrl+Alt+F6

For historical reasons, the virtual consoles are called TTY (teletypewriter)

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 41/42



Classifications Kernel Architectures Structure (Layers) of Operating Systems Booting the Operating System

(7) Pass Control to the Users (2/2)

In each virtual console, the operating system starts a shell after
successful login, which provides a user interface for accessing the
system via the command-line

Examples of shells are bash, fish, ksh, csh, tcsh, or zsh

If the operating system uses a graphical login manager (e.g. GDM,
LightDM, or XDM), it is started in this last step of the boot process
too.

The graphical login manager typically runs on TTY7 and can be accessed on many Linux distributions with the keyboard shortcut
Ctrl+Alt+F7

After logging in via the graphical login manager, the desktop
environment is loaded, which provides the user with a graphical user
interface

Examples of desktop environments are: XFCE, GNOME, KDE, Window
Maker or Enlightenment

Prof. Dr. Christian Baun – 2nd Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2425 42/42


	Classifications
	Singletasking and Multitasking
	Single-user and Multi-user
	8/16/32/64bit Operating Systems
	Real-Time Operating Systems
	Distributed Operating Systems

	Kernel Architectures
	Monolithic Kernels
	Microkernels
	Kernel-Architectures of Real-Time Operating Systems
	Hybrid Kernels
	Torvalds vs. Tannenbaum
	HURD
	kHTTPd

	Structure (Layers) of Operating Systems
	Structure (Layers) of Operating Systems

	Booting the Operating System
	Booting the Operating System
	Power on the Computer
	Start the Firmware and perform a Self-Test
	Start the Boot Loader
	Start the Operating System Kernel and the temporary Root File System
	Mount the real Root File System
	Start init/systemd and the System Processes
	Pass Control to the Users


