Achieved Points:

Written examination in Operating Systems

February 17th 2025

Last name:													
First name:													
Student num	ber	: _											
Mit dem Bearbe alleine bearbeit der Aufg	en un	d das	s Sie	sich g	gesund	d und	prüfu	ıngsfä	hig fi	ühlen.	Mit	dem l	I
By attending the healthy and capare cons	able t	o par	ticipa	te. O	nce ye	ou ha	ve rec	eived	the e	examii	nation	n pap	
 Use the prove You are allowaritten origin Do not use and Time limit: Turn off you 	wed to inals a a red p	o use a re allo pen. nutes	a self powed,	prepar	red, sin	$igle \ si$		IN-A4	! sheet	t in $ h$	e exai	m. On	ly <i>hand</i> -
								(Gra	de:			
uestions:	1	2	3	4	5	6	7	8	9	10	11	Σ	
Maximum Points:	6	6	10	10	16	7	9	6	5	7	8	90	

1.0: 90.0-85.5, **1.3**: 85.0-81.0, **1.7**: 80.5-76.5, **2.0**: 76.0-72.0, **2.3**: 71.5-67.5,

2.7: 67.0-63.0, **3.0**: 62.5-58.5, **3.3**: 58.0-54.0, **3.7**: 53.5-49.5, **4.0**: 49.0-45.0, **5.0**: <45

Question 1)

Points: of 6

1 Point

(1) Describe how memory protection works.

1 Point

(2) Name <u>one</u> singletasking operating system.

1 Point

(3) Name <u>one</u> multitasking operating system.

1 Point

(4) Name <u>one</u> single-user operating system.

1 Point

(5) Name <u>one</u> multi-user operating system.

1 Point

(6) Name <u>one</u> real-time operating system

Question 2	2)
------------	----

ue	estion 2)		Points:	of 6
(1)	GNU HURD implements a	A		
	\square monolithic kernel	\Box microkernel	\Box hybrid kernel	
(2)	Linux implements a			
	\square monolithic kernel	\square microkernel	\square hybrid kernel	
(3)	MacOS X implements a			
	\square monolithic kernel	\square microkernel	\square hybrid kernel	
(4)	Windows NT4/Vista/XP/	7/8/10/11 implement	ents a	
	\square monolithic kernel	\square microkernel	\square hybrid kernel	

2 Points

 $\frac{1}{2}$ Point

 $\frac{1}{2}$ Point

½ Point

½ Point

2 Points

(6) In class we discussed the concept of the kernel-based web server kHTTPd (see image). Explain one benefit and one drawback of this concept.

(5) Name <u>one</u> advantage and <u>one</u> drawback of microkernels.

Question 3)

Points: of 10

4 Points

(1) Name and explain one advantage and one drawback of the autonomous subsystems (e.g. Intel Management Engine or AMD Platform Security Processor) in modern PCs.

2 Points

(2) Describe the purpose of the firmware in the computer.

1 Point

(3) Give the name of the firmware in classic computers from the early 1980s to the late 2000s.

1 Point

(4) Give the name of the firmware in modern computers.

1 Point

(5) Explain what the boot loader is.

1 Point

(6) Explain where the boot loader is stored.

of 10	Points:	estion 4)	Que	
initial RAM file system	al RAM disk (initrd) or than	,	•	2 Points
	getty process.	Describe the task of a	(2)	1 Point
ı starts.	ty processes the operating system	Specify how many get	(3)	1 Point
operating system stores.	of process context information the	Name the three sorts of	(4)	½ Points
store all process context	ess control block (PCB) does not	Explain why the processinformation.	(5)	½ Point
	e dispatcher.	Explain the task of the	(6)	1 Point
	e scheduler.	Explain the task of the	(7)	1 Point
	preemptive scheduling.	Name one drawback of	(8)	1 Point

1 Point (9) Name one drawback of non-preemptive scheduling.

(Question 5)	Points: of 1
$1\frac{1}{2}$ Points	(1) Name the three main compon	ents the CPU contains.
1½ Points	(2) Name the three digital bus sy the Von Neumann architectur	vstems each computer system contains according tree.
3 Points	(3) Explain the tasks that are car	rried out by the three bus systems of subtask (2).
2 Points	(4) Name the two groups of Inpudistinguished according to the	out/Output devices for computer systems that are ir minimum transfer unit.
2 Points	(5) Describe the different operation	ng principles of the two groups of subtask (4).
2 Points	(6) Name two examples for each g	group from subtask (4).
1 Point 1 Point	 □ Direct Memory Access (8) Mark the concept where readi □ Direct Memory Access 	☐ Interrupt driven ☐ Busy waiting
1 Point	(9) Name the cache write policy t(10) Explain for what reason dirty	·

Question 6)

Points: of 7

1 Point

(1) Explain why it is wrong to call SSDs Solid State Disks.

1 Point

(2) Name two advantages of SSDs over HDDs.

1 Point

(3) Explain why erase operations on flash memory are more complex than read operations.

4 Points

- (4) Draw the structure of a hard disk drive schematically. Explain with your drawing(s) the meaning of the following terms:
 - Sector (= Block)
 - Track
 - Cylinder
 - Cluster

Q	uestion 7)	Points: of 9
1 Point	(1) Describe the information inodes store.	
1 Point	(2) Name two examples of metadata in the file	e system.
1 Point	(3) Describe what a cluster in the file system is	is.
1 Point	(4) Describe how directories in the Linux file s	systems are technically implemented.
1 Point	(5) Explain why moving a large file within a fill it.	le system is always faster than copying
½ Point	(6) Documents/MasterThesis/thesis.tex is □ absolute path name □ relative pa	,

½ Point	(7) /home/ <username>/Mail/inbox/ is an/a</username>					
	\Box absolute path name \Box relative path name					
1 Point	(8) Describe what the File Allocation Table (FAT) is and the information it store					

1 Point (9) Describe the objective of the journal in a journaling file system.

1 Point (10) Describe a benefit of using a journaling file system compared with using a file system without a journal.

Question 8)

Points: of 6

1½ Points

(1) Name the three values that are required to store an extent.

1 Point

(2) Describe the benefit of using extents compared with direct addressing of the clusters.

½ Point

(3) Name one Linux file system that implements block addressing.

½ Point

(4) Name one Linux file system that implements journaling.

½ Point

(5) Name one Linux file system that implements extents.

 $\frac{1}{2}$ Point

(6) Name one Windows file system that implements the file allocation table.

½ Point

(7) Name <u>one</u> Windows file system that implements journaling.

 $\frac{1}{2}$ Point

(8) Name one Windows file system that implements extents.

½ Point

(9) Name one file system that implements copy-on-write.

Question 9)

Points: of 5

5 Points

(1) Perform the deadlock detection with matrices and check if a deadlock occurs.

Existing resource vector =
$$\begin{pmatrix} 9 & 6 & 8 & 7 & 6 & 7 \end{pmatrix}$$

$$\begin{array}{l} \text{Current} \\ \text{allocation} \\ \text{matrix} \end{array} = \begin{bmatrix} 2 & 0 & 2 & 3 & 2 & 0 \\ 2 & 1 & 2 & 0 & 0 & 3 \\ 1 & 3 & 2 & 1 & 0 & 1 \\ 3 & 1 & 0 & 1 & 1 & 1 \end{bmatrix} \qquad \begin{array}{l} \text{Request} \\ \text{matrix} \end{array} = \begin{bmatrix} 1 & 0 & 2 & 2 & 3 & 1 \\ 5 & 3 & 2 & 2 & 1 & 2 \\ 2 & 0 & 4 & 4 & 4 & 2 \\ 4 & 3 & 0 & 1 & 2 & 3 \end{bmatrix}$$

Question 10)

Points: of 7

7 Points

- (1) Develop a pub simulation software. Glasses are filled by a bartender, and a guest consumes their content.
 - The number of available glasses is limited. The bar has only 20 glasses.
 - Process bartender fills glasses and places them on the bar.
 - Process guest removes glasses from the bar and consumes their content.
 - Mutual exclusion when accessing shared resources (taking a glass) is necessary to avoid inconsistencies.
 - If all glasses are filled, the process bartender must be blocked.
 - If all glasses are empty, the process guest must be blocked.

To synchronize the two processes, create the required semaphores, assign them initial values, and insert semaphore operations.

```
typedef int semaphore;
void bartender (void) {
  while (TRUE) {
    fillGlass;
    placeGlassOnBar;
}
void guest (void) {
  while (TRUE) {
    removeGlassFromBar;
    emptyGlass;
}
```

Question 11)

Points: of 8

The output of the ps command contains helpful information about the processes in the operating system.

\$ ps	-eFw									
UID	PID	PPID	C	SZ	RSS	PSR	STIME	TTY	TIME	CMD
root	1	0	0	42090	12820	0	Aug29	?	00:00:03	/sbin/initroot
root	2	0	0	0	0	4	Aug29	?	00:00:00	[kthreadd]
bnc	2149	1782	1	258958	133484	7	Aug29	?	00:11:20	xfwm4display :0.0
bnc	2474	1782	0	137013	54512	8	Aug29	?	00:03:28	xfce4-paneldisplay :0.0
bnc	2478	1782	0	166034	138652	15	Aug29	?	00:00:20	xfdesktopdisplay :0.0
bnc	3252	2474	3	8590107	577484	9	Aug29	?	00:51:07	/opt/google/chrome/chrome
bnc	3530	1721	0	157125	62824	0	Aug29	?	00:00:44	/usr/libexec/gnome-terminal-server
bnc	3568	3530	0	3271	9556	15	Aug29	pts/0	00:00:01	bash
root	6706	1	0	7087	10556	3	Aug29	?	00:00:00	/usr/sbin/cupsd -l
root	6737	1	0	44549	18680	12	Aug30	?	00:00:00	/usr/sbin/cups-browsed
bnc	72577	72539	0	2773	7224	4	Aug31	pts/1	00:00:00	/bin/bash
bnc	90775	72577	1	279130	187352	9	09:39	pts/1	00:00:04	okular thesis.pdf
bnc	94414	3568	0	2861	4952	6	11:19	pts/0	00:00:00	ps -eFw

1 Point

- (1) Explain the information in the column UID.
- 1 Point (2) Explain the information in the column PID.
- 1 Point (3) Explain the information in the column PPID.
- 1 Point (4) Explain the information in the column SZ.
- 1 Point (5) Explain the information in the column RSS.
- 1 Point (6) Explain the information in the column TTY.
- 1 Point (7) Explain the information in the column TIME.
- 1 Point (8) Name the parent process of the process that has printed this overview of the processes in the command-line interface.