

SECURE
INSTANT MESSAGING

by
Royce Lanson Pinto

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE
in

High Integrity Systems

Under the guidance of

Dr. Michael Spahn
Senior Researcher

SAP Research CEC Darmstadt

Prof. Dr. Christian Baun Prof. Dr. Matthias Deegener
Supervisor 1 Supervisor 2

Computer Science and Engineering Computer Science and Engineering
Frankfurt University of Applied Sciences Frankfurt University of Applied Sciences

The work in this thesis was supported by SAP SE. Their cooperation is hereby gratefully ac-
knowledged. This thesis, submitted in partial fulfillment of the requirements for the award of
Master of Science in High Integrity Systems, Faculty of Computer Science and Engineering,
Frankfurt University of Applied Sciences. The document has not been submitted for qualifica-
tions at any other academic institution.

Secure Instant Messaging
Royce Lanson Pinto
Matr.-Nr: 1029035

30 ECTS thesis submitted in partial fulfillment of a
Master of Science degree in High Integrity Systems.

Copyright © 2014 Royce Lanson Pinto.
All rights reserved.

External Supervisor: Dr. Michael Spahn
Thesis supervisor: Dr. Prof. Christian Baun
Co-supervisor: Dr. Prof. Matthias Deegener

Date of registration: 9.04.2014
Date of submission: 9.10.2014

Contact the author:

University address:
Frankfurt University of Applied Sciences Tel: +49 069/1533-0
Nibelungenplatz 1 Fax: +49 069/1533-2400
D-60318, Frankfurt am Main post@fh-frankfurt.de
http://www.frankfurt-university.de/

Royce L. Pinto asserts his moral right to be identified as the author of this work. The copyright
of this thesis rests with the author. Quotation from it is permitted, provided that full acknowl-
edgement is made. SAP and other SAP products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of SAP SE (or an SAP affiliate
company) in Germany and other countries. All other product and service names mentioned
are the trademarks of their respective companies.

The purpose of art is to lay bare the questions
which have been hidden by the answers

— James Arthur Baldwin

To my parents Lancy and Leena Pinto.
All I have and will accomplish are only possible

due to their love and sacrifices.. . .

Preface

This thesis would not have been possible without the guidance and the help of several indi-

viduals who in one way or another contributed and extended their valuable assistance in the

preparation and completion of this study.

First and foremost, my utmost gratitude to Dr. Michael Spahn, my advisor and mentor at SAP

SE, who encouraged me to tackle challenges which, at first, seemed insurmountable. I have

learned much from him and am grateful for it. I also want to thank Dr. Sebastian Wieczorek at

SAP SE, for his guidance and support at every point of the way.

I am also grateful to my supervisor- Professor Dr. Christian Baun at the Frankfurt University of

Applied Sciences. I thank him from the bottom of my heart for sharing valuable insights in the

relevance of the study. I also want to thank my co-supervisor Professor Dr. Matthias Deegener

for his help and good feedback. I also thank Simon Hoffmann and Johannes Stehlin, Gobal

Mobile IT CoE, SAP SE for their assistance and help on SAP Wire. Without their assistance I

would not be able to understand the workings of SAP Wire.

I am grateful to our renowned institution, The Frankfurt University of Applied Sciences with

its very ideals and inspirations for having me provided with the facilities which were required

for completion of this thesis. I also want to thank my friends for sharing their insights and

their support. And last but certainly not the least, I would like to thank my parents and my

brother. They have always supported and encouraged me with their best wishes.

Frankfurt am Main, 9 October 2014 Royce Lanson Pinto.

i

Abstract

With the rise of the internet-connected always-on smart phones, instant messaging (IM) appli-

cations have become more and more ubiquitous, and for some people even act as their main

center of private communication. These kinds of applications are easy to use, but they usually

do not technically ensure that sent messages can only be read by the intended recipient. One

reason is due to the technical limitations of current technology like sending plaintext across or

using HTTP and another is that some countries enforce operators of communication services

to enable tapping interfaces for according authorities.

Thus, if technical ways of tapping communication exists, sooner or later they will be used

and as we learned from Edward Snowden [27], these are widely used. The awareness of com-

munication tapping leads to a changed perception of communication. The change is not

only about privacy, it’s a change in behavior. People act and share differently when they know

that a photo or video will live forever. As no one can guarantee that the message will never

be re-viewed in the future or if the political climate changes to the extreme then this can be

used against the user. A possibility to lower the risk of information leakage is to encrypt the

content of sent messages in a way only decryptable by the intended recipient. To foster more

secure communication, one not only needs to tackle the challenge of finding ways of making

message exchange itself more secure, but also to make it as easy to use as possible. To foster

its adoption the best encryption technology won’t be used if its usage is too complex for the

masses.

How can IM-based communication, especially in an enterprise context, be made more se-

cure? How to exchange messages if one can neither trust the communication channels (i.e.

internet;HTTP) nor the server processing the data to not reveal the data to unwanted third

iii

Preface

parties? As a concrete challenge, the most important security-related challenges should be

identified, best practice solution to tackle them found, a concept for enhancing IM systems

with additional security created, as well as prove the concept by doing a concrete implementa-

tion enhancing a real enterprise IM system. The IM system should be significantly improved

in at least one of the identified problem domains.

This thesis describes how this challenge was solved. In the following, First, the security-related

challenges to IM are presented along with the related research into the domain and current

solutions to come to a best-practice solution. Then a concept is proposed on how to create

a Secure IM system which can overcome the challenges described. Then, the concept is

proved by implementing the solution to a real IM system. Finally, findings on the IM concept

are documented and how and in which way it was improved and where future work is still

necessary.

iv

Declaration

I hereby declare to have written this master thesis entirely by myself and used no other sources

than those listed in the resources part at the end of this thesis. Furthermore, I affirm that this

thesis has never been published in Germany or in any other country.

All the registered trademarks, names, logos and icons appearing in this thesis are the property

of their respective owners. SAP and other SAP products and services mentioned herein as well

as their respective logos are trademarks or registered trademarks of SAP SE (or an SAP affiliate

company) in Germany and other countries. All other product and service names mentioned

are the trademarks of their respective companies. Please see http://www.sap.com/corporate-

en/legal/copyright/index.epx#trademark for additional trademark information and notices.

Frankfurt am Main, October 9 2014

Royce Lanson Pinto

v

Contents
Preface i

Abstract iii

Declaration v

List of figures xi

List of tables xiii

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 3

1.3 Objective . 6

1.4 Approach Methodology . 6

1.5 Reading directions . 6

2 State of the Art 9

2.1 Working of Mobile IM Applications . 9

2.2 Threats to Instant Messaging . 11

2.2.1 General Threats . 11

2.2.2 Attacks . 12

2.3 Enterprise Instant Messaging (EIM) . 14

2.4 Related work in Secure Instant Messaging . 15

2.5 Security in current Instant Messaging Applications 19

3 Concept 23

3.1 Initial Requirements . 23

3.2 Detailed Requirements . 24

3.2.1 Confidentiality . 24

3.2.2 Authentication . 29

3.2.3 Forward Secrecy . 31

3.2.4 Repudiability . 32

3.2.5 Trustworthiness . 33

3.3 Secure IM Concept . 34

vii

Contents

4 Implementation 35
4.1 Application of concept . 35
4.2 Instant Messaging at SAP SE . 35
4.3 Technology . 36

4.3.1 The SAP HANA Cloud Platform . 36
4.3.2 The Android Operating System . 39

4.4 SAP Wire . 41
4.4.1 Features . 41
4.4.2 Functionality . 42
4.4.3 Data Model . 43
4.4.4 Architecture . 43
4.4.5 Wire’s Web Service . 44
4.4.6 The Web Based App . 45
4.4.7 The Wire Android App and iOS App . 46

4.5 Features to be added . 47
4.5.1 Assumptions . 48
4.5.2 Target Audience . 48

4.6 Use Cases . 49
4.6.1 Actors . 49
4.6.2 Use Case Models . 49

4.7 Programming languages and tools . 52
4.8 PGP Encryption and Decryption . 52
4.9 SAP Wire Key Repository . 53

4.9.1 Person . 54
4.9.2 PersonDAO . 54
4.9.3 PersistenceWithJDBCServlet . 55

4.10 New Functionality . 55
4.11 Basic Cryptography Prototype . 56
4.12 The Wire Android App . 57

4.12.1 Class Descriptions . 58
4.12.2 Connecting new functionality to the app’s existing working 60

4.13 Challenges Faced . 62
4.13.1 Message size in the SAP Wire Database . 63
4.13.2 Running of Encryption/Decryption as a background task 63
4.13.3 Wire message PULL feature . 64

5 Testing 65
5.1 Testing Plan . 65

5.1.1 Scope . 66
5.1.2 Test Approach . 66
5.1.3 Entry Criteria . 66
5.1.4 Exit Criteria . 67

5.2 Test Environment . 67
5.2.1 Test Hardware . 67
5.2.2 Test Software . 68
5.2.3 Setting up the Test Environment . 68

viii

Contents

5.3 Testing Methods Overview . 69
5.3.1 Functional Testing . 69
5.3.2 Data and Database Testing . 69
5.3.3 UI / Usability Testing . 69
5.3.4 Performance Testing . 69
5.3.5 Failure and Recovery Testing . 70
5.3.6 Regression Testing . 70

5.4 Test Results Overview . 70

6 Conclusion 71
6.1 The Concept Proposed . 71

6.1.1 Requirements Re-visited . 71
6.2 Comparison with other IM Products . 73
6.3 Future Enhancements . 73
6.4 Summary . 74

A Appendix 75
A.1 Screenshots . 75

B Glossary 83

Bibliography 87

ix

List of Figures
1.1 Communication surveillance breakdown . 4

2.1 Single server (Central) IM model . 9
2.2 Multiple (Distributed) server IM model . 10

3.1 Symmetric Encryption . 26
3.2 Asymmetric Encryption . 27
3.3 Working of PGP . 28
3.4 Server spoofs Alice’s public key . 30
3.5 Server sends spoofed public key . 30
3.6 Man-in-the-middle attack . 31
3.7 Working of Digital Signatures . 33

4.1 SAP HANA Cloud Platform . 37
4.2 Data model of SAP Wire . 43
4.3 SAP Wire Architecture . 44
4.4 SAP Wire Web service working . 45
4.5 SAP Wire Desktop Web App and Mobile Web App 46
4.6 The iOS App . 46
4.7 The Android App . 47
4.8 Actor and a use case . 49
4.9 UseCase for Starting the App . 50
4.10 UseCase for Sending a Message . 50
4.11 UseCase for Receiving a Message . 51
4.12 UseCase for Verify Public Key . 51
4.13 SAP Wire Key Repository UML . 54
4.14 SAP Wire Activity Diagram . 57
4.15 Wire Android Encryption Class Relationship . 59
4.16 The app preferences menu . 61
4.17 Toast notifications displayed by the app . 61
4.18 App fingerprint verification screen . 62

5.1 Wire crashed notification . 70

A.1 Wire Android App Login Screen . 75
A.2 Wire App Chatrooms . 76
A.3 Wire Un-encrypted chat . 76

xi

List of Figures

A.4 Wire Encrypted chat . 77
A.5 Wire Key files . 77
A.6 Wire Key preferences and Verification options . 78
A.7 A wire generated PGP Public Key . 78
A.8 Wire Key Repository . 79
A.9 SAP Wire website . 80
A.10 Un-encrypted chat on Wire Web Application . 81
A.11 Encrypted chat on Wire Web Application . 82

xii

List of Tables
2.1 IM-related definitions . 10

4.1 SAP HANA Cloud Platform Features . 38

5.1 Test Types . 66
5.2 Test Devices . 67

xiii

1 Introduction

In this chapter the topic- Instant Messaging (IM) is introduced, the questions that will

be discussed are presented and also the motivation behind the research and scope are outlined.

The chapter also includes reading directions, which describe the organization of report.

1.1 Background

“ Instant Messaging (sometimes called IM or IMing) is a type of online con-

versation which offers real-time text transmission over the Internet. ”
Instant Messaging (IM) is extremely popular worldwide. What began as a simple application

for consumers just to chat with friends, IM systems have grown to be an important com-

munication platform for both the Internet community and the business world. Globally,

Informa forecasts that "...SMS traffic will total 9.4 trillion messages by 2016, up from 5.9 trillion

messages in 2011"[2]. However, SMS’s share of global mobile messaging traffic will fall from

64.1% in 2011, to 42.1% in 2016. At the same time, global mobile Instant Messaging traffic will

increase from 1.6 trillion messages in 2011 to 7.7 trillion messages in 2016, doubling its share

of global messaging traffic from 17.1% in 2011 to 34.6% in 2016[2]. Worldwide IM accounts are

expected to grow from over 3.4 billion in 2013 to over 4.4 billion by year-end 2017, representing

an average growth rate of about 7%[10]. UK based institute Juniper Research recently forecasts

1

Chapter 1. Introduction

that global mobile messaging traffic will reach 28.2 trillion annually by 2017, nearly double the

14.7 trillion messages which will be sent in the year 2012. [12].

Historically, IM systems are present since the applications talk and write where developed

for the UNIX operating system. However since the explosion of the use of the internet coupled

with the massive increase in use of the mobile devices the popularity of IM applications has

exploded. In essence it is an integral part of ones social life. As per the study conducted by

Radicati[10] Instant Messaging can be roughly divided into the following segments: Public IM

Networks, Enterprise IM Platforms and Mobile IM.

Public IM Networks provide IM services primarily for the consumer market, but are also used

by business users. Vendors include Facebook, Google, Microsoft / Skype, Yahoo! and others.

Enterprise IM Platforms are designed for businesses, they have improved security and privacy

features that cannot typically be attained through Public IM networks. Vendors include: Cisco,

IBM, Microsoft, Novell and others.

There has been a move from desktop devices to mobile devices. Since the advent of the

iPhone and Android devices there has been a considerable shift to portable devices. There

has been a move from desktop computers to touch based tablets. Even the most widely used

operating system- Windows is now designed for touch based portable devices. So naturally

Instant Messaging applications have become more popular on these devices. IM services that

are developed specifically for use on mobile devices, and typically serve as alternatives to

SMS messaging, The Mobile IM segment includes: Apple iMessage, BlackBerry Messenger,

WhatsApp Messenger, and others.

Being such a popular method of communication over the internet, IM is becoming a replace-

ment for e-mail. Unlike e-mail, Instant Messaging allows users to see whether a chosen friend

or co-worker is connected to the Internet. Typically, the Instant Messaging service will alert a

user if somebody on the user’s list of correspondents is on-line. Instant Messaging also differs

from e-mail in that messages are exchanged directly almost instantly, allowing for a two-way

communication in real-time.

Because of the almost immediate two-way nature of communication, many users feel that the

use of Instant Messaging in the workplace leads to more effective and efficient workplace com-

2

1.2. Motivation

munications and, therefore, to higher productivity. As a result, IM is increasing in popularity

in both professional and personal applications. However, as with most things Internet based,

the increasing use of Instant Messaging has led to an associated increase in the number of

security risks.

Though Instant Messaging competes with social media and SMS as a means of communica-

tion, Mobile IM segments have shown solid growth in 2013.[10] IM remains a popular form of

communication with consumers and business users, despite popular alternatives like Face-

book or SMS / text messaging. While this competition has in some ways limited growth, it

is also somewhat revealing about the blurred boundaries between these technologies. IM

is becoming far more than text-only communication and is more properly understood as a

multimedia messaging and sharing platform with a robust feature set.

1.2 Motivation

Instant Messaging is in today’s time ubiquitous and is used by many employees at home

and at the work space. In many companies, therefore find themselves next to Enterprise

Instant Messaging services (EIM) as Sametime, Lync and other a multitude number free

communication tools mainly in private use for example Skype, AIM, Hangout and WhatsApp.

[35]. For personal use the latter are reasonable, but when they are used in a company in daily

communication it implies a security risk. Often they become the target of malware and virus

developers not only by phishing communication data can be routed.

One increasingly finds Instant Messaging in the corporate communications, this is thanks to

the many chat programs for smartphones and tablets and can be integrated quickly and used

easily internal and external employees.

Many users and media worry since the acquisition of the "top dog" WhatsApp by Facebook

has led them to expose their data. The fear being that services of this type in addition to the

users telephone numbers also have access to the complete address book contained therein.

Considering that Instant Messaging applications add a lot of convenience, but mostly security

concerns are not addressed in great detail. Most Instant Messaging services often trade speed

for security. A simple example being WhatsApp in which the same encryption key is used in

3

Chapter 1. Introduction

both directions [26]. Hackers are trying to gain access to conversations. Thus, some of the

major issues that plague the IM world are: Client Vulnerabilities, Insecure Network Traffic,

Open Connections, Identity Theft, Data Theft, Loss of Privacy, Absent Authentication and

Social Engineering [25]. The many security mechanisms designed for web based applications

are not sufficient for IM. There is no complete collective suite to solve all security problems of

the IM system and simple SSL is not enough.

The number of interested parties eager to listen in on online conversations, including what

is typed through Instant Messaging, has never been higher. Also, the provider of the service

might be coerced or forced to turn over the un-encrypted messages to a third party. It’s not just

since the disclosure of the extent of National Security Agency’s (NSA) spying activities[3], that

security and privacy of message exchange matters for users of all kinds may it be a company

that wants to avoid leakage of company secrets, people living in countries without freedom of

speech that want to communicate freely without having to fear punishment, or people that

just want to ensure that their private communication really stays private. Also, if a third party

listens onto conversations these can be used to target advertisements.

Figure 1.1: Communication surveillance breakdown

The above figure details the communication surveillance breakdown according to the Wash-

ington Post, former NSA contractor Edward Snowden who obtained and shared with The

4

1.2. Motivation

Washington Post a large volume of e-mails, messages, photos and documents intercepted

by the NSA from online accounts and network links in the United States. In this cache of

communications, the NSA’s foreign targets were far outnumbered by ordinary Web users

whose content was intercepted "incidentally" as a collateral effect of the surveillance [27].

For example the Washington Post also estimated NSA intercepted and collected about 22,000

surveillance reports from 2009-2012.

If we look at this scenario, why would a user want any third party to read their personal

communication? Considering the above figure of a sample set of 160,000 individual intercepts

from 11,400 unique accounts, in this sample set, 121,134 messages are intercepted from IM

clients! Especially when a large chunk is from the general populace? It blows privacy entirely

down the drain. This is like George Orwell’s Nineteen Eighty-Four [63], we are tending to a

world with omnipresent government surveillance.

The change is not only about privacy, it’s a change in behavior. People act and share differently

when they know that a photo or video will live forever. A possibility to lower the risk of

information leakage is to encrypt the content of sent messages in a way only decryptable by

the intended recipient, for example using PGP (Pretty Good Privacy) to encrypt e-mail content

to the recipient’s public key before sending the e-mail. But such kind of extra steps are hard

to understand for average users and kill the ease of use, causing the vast majority of users to

continue using more insecure ways of communication because of convenience.

Considering all factors it boils down to a matter of trust. Who do we want to trust? The end

users? The server? End users are generally trustworthy because people are generally extremely

careful of their devices. The server or administrator but can normally see all conversations that

pass through it and can turn them over to a third party or the government when demanded.

So the question is what if we cannot trust the server itself?

With all the above threats to IM highlighting the danger of using present IM systems and to

improve the state of security we aim to provide a well defined security add-on for current IM

system.

5

Chapter 1. Introduction

1.3 Objective

The majority of Instant Messaging services for consumers in the consumer environment

has not been specifically secured. Meanwhile, the tools available generally use standardized

methods of encryption, SSL / TLS, but also protect the conversations with private / public

key method. The WhatsApp Alternatives Threema, myENIGMA and Telegram prefer self-

development in which the particular is praised by Threema for their safe source.

As of now, however anyone who does not want to give up the ability to communicate with the

rest of the world, must make compromises in terms of safety.

The aim of this thesis is to analyze the current scenario of instant messaging and identify the

security related problems, challenges and state of the art solutions. Using the results obtained,

a concept is proposed which can be show how security may be improved on the IM platform

and thus achieve Secure IM. This concept is applied to the existing corporate enterprise

environment. A look is taken on how a communication system should be composed, that is as

secure as possible and at the same time as easy to use which is an open challenge involving a

multitude of unanswered research questions.

1.4 Approach Methodology

The basic approach was to understand the pre-requisites, gather information regarding the

problem try to address problems in a systematic manner then try to give solutions by means

of proof of concepts and demo prototypes.

1.5 Reading directions

The parts of the methodological approach are described in the following chapters:

Chapter 1 provides a basic introduction and what motivates this work. It describes Why

Secure Instant Messaging is important to address and why current security solutions do not

suffice in the current corporate scenario and need to be complemented. Moreover, it states

the goals of this work.

6

1.5. Reading directions

Chapter 2 discusses the state of the art of the current affair of things in the domain of Secure

Instant Messaging. It shows that many security ideas exist depending on the given scenario or

technique and presents our definition of the Secure Instant Messaging. It details the current

trends in applications that use secure concepts in Instant Messaging. Moreover, it states the

direction in which way this work is to follow from previous work.

Chapter 3 describes the concept of the Secure IM system proposed along with the require-

ments. This is tune with the goal of the thesis.

Chapter 4 outlines the implementation of the concept onto a prototype in SAP’s corporate

environment. It explains technical terms used in the domain of SAP’s Cloud offering-The

HANA Cloud platform, encryption and the android platform and the libraries used and also

details the challenges faced during implementation. It specifies how the concept’s principles

were applied to the prototype.

Chapter 5 details the test results of the developed app. It explains the tests performed on the

app and the testing methodology used.

Chapter 6 is the final chapter of this thesis and details the summary of the entire thesis and

explains the scope of future enhancements.

The next section consists of the appendices, glossary of terms and the bibliography of refer-

ences.

7

2 State of the Art

This chapter lists the current knowledge and state of research in the field of Secure Instant

Messaging and its usages in today’s trending applications. We give a close look at existing mobile

IM applications and their security offerings. This chapter also details the most significant threats

to mobile IM systems.

2.1 Working of Mobile IM Applications

In a bare essence almost all IM clients contain: a contact list, a block list, presence information,

email address / telephone number or a unique ID, ability to send and receive files and of

course messages (one to one or group).

Figure 2.1: Single server (Central) IM model

Communication generally follows a client-

server model, each user shares a detail with

the server. This can be a mobile number or

email address, in some cases this is ofent cou-

pled with a user chosen password with the

server. The ID and if present, the password is

used for authentication with the server. Mes-

sages are mostly sent through the server, but

true peer to peer (P2P) communications can

also take place. Communication takes place over TCP and is sometimes secured generally

9

Chapter 2. State of the Art

with SSL.

Figure 2.2: Multiple (Distributed) server IM model

An IM server generally appears to be a single

entity to a client, however it may be a group

of servers controlled by a single IM service

provider. Different IM client providers can-

not communicate with each other because of

different in-compatible protocols or servers.

For example if Alice wants to talk to Bob, they

must use the same IM service. Alice’s mes-

sages will be sent to Bob with help of the

server. For P2P communication, the server provides information to each party.

Below is a table which shows generally used IM terms:

Contacts The list of user IDs who use the same IM service and who the user can
contact

Blocked contacts The list of user IDs explicitly barred from contacting the user or seeing
his details.

IM user A human user successfully logged in to an IM server.

IM client A mobile app that enables a user to use the IM service.

IM server A server which allows IM clients to access IM features in an IM service.

Presence Presence information reveals whether or not a user is logged in to an
IM server.

One-to-One chat A user sends or receives messages from another user, generally through
the IM server.

Group chat More than two users exchange messages at a time.

Chat room A virtual room, generally consisting of many users who exchange In-
stant Messages.

Table 2.1: IM-related definitions

10

2.2. Threats to Instant Messaging

2.2 Threats to Instant Messaging

This section lists the most significant threats to public IM systems. The list is formulated

from known attack forms, and IM protocol and implementation flaws that may allow attacks.

The aim of this list is to acquire insight to aid in designing a robust security protocol for IM

systems.

2.2.1 General Threats

Insecure Connections

The greatest threat to IM networks is in their open, insecure connections. Because IM connec-

tions are mostly based on the client-server architecture. Authentication first takes place, most

requests lack authentication (except in the login message), confidentiality and integrity.This

may lead to other security vulnerabilities including impersonation, denial of service (DoS),

man-in-the-middle, replay and more.

Impersonation

Attackers may impersonate valid users. Attackers can snoop and take over client-to-server

connections. It is thus quite easy to impersonate any connection via man-in-the-middle

attacks. This allows the attacker to send and read messages meant for another user this is a

major risk to IM applications which do not offer encryption.

Denial of Service (DoS)

A DoS attack may simply cause the client never to connect to the server and crash. Flooding

with unwanted messages is possible when users can receive messages from everyone. However,

IM clients generally support user blocking. A victim can block the attacker’s account ID

easily; however, attackers may get through this barrier by using many compromised accounts

simultaneously.

11

Chapter 2. State of the Art

DNS Spoofing

An attacker or a malicious program can modify the TCP / IP settings of a clients system to

point to a different DNS. The attacker will setup a duplicate or rogue IM server. The client has

no way of knowing or verifiying if the server is legitimate. A server verifies the user through his

username and password. So the server is susceptible to man-in-the-middle attacks.

Spam sent via IM Systems

The default security settings in IM clients are usually at the lower end of the client’s security

capability. Most IM clients allow anyone from the same IM service to contact a user by default.

Allowing message reception from everyone opens the door to a nuisance – spim – i.e. spam

sent via IM systems.

This is because most Instant Messaging apps do not have an option enabled by default that

allows only users added to a persons contact list to be authorized to message the user.

Malicious Hyperlinks

Links to web pages containing malicious content can be sent within normal Instant Messages.

These are meant to mislead the user receiving the hyperlink having an innocent visible text to

visit a web site corresponding to a deceitful link. Also, malicious hyperlinks can vector users to

phishing web sites.

2.2.2 Attacks

“Cryptanalysis is the art of deciphering encrypted communications without

knowing the proper keys.

Mathematics Department of the University of Colorado Boulder ”Since we are dealing with Secure Instant Messaging, at the most basic the system uses en-

crypted messages. The attacker might try to break the encryption and read or change these

messages. There are the following attack forms.

12

2.2. Threats to Instant Messaging

Replay Attacks

A replay attack is a network attack in which data is maliciously transmitted or delayed or

fraudulently repeated. The attacker who intercepts data and sends it again can do a packet

substitution or change the data.

Man-in-the-middle attacks

A man-in-the-middle attack is an active eavesdropping in which the adversary intercepts and

reads the transmission between the two clients. It basically establishes individual connections

between the users and make them believbe they are communicating directly with each other.

The attacker can read all messages and inject new ones as well.

Known-ciphertext Attacks

The known-ciphertext attack (KCA) is an attack model for cryptanalysis where the attacker

has only access to a set of ciphertexts. In practice it is possible to make guesses of plaintext,

as the messages generally have fixed format headers. Most modern cryptosystems are strong

enough agains ciphertext-only attacks.

Known-Plaintext Attacks

The known-plaintext attack (KPA) is an attack model for cryptanalysis where the attacker has a

sample of both the plaintext i.e the unencyrpted text, and its encrypted version. The attacker

can potentially use these to reveal secret information such as secret keys.

Chosen-Plaintext Attacks

A chosen-plaintext attack (CPA) is another attack model for cryptanalysis where that the

attacker has the capability to choose arbitrary plaintexts to be encrypted and obtain the

corresponding ciphertexts.

13

Chapter 2. State of the Art

Chosen-Ciphertext Attacks

A chosen-ciphertext attack (CCA) is another attack model for cryptanalysis in which the

attacker gathers information, at least in part, by choosing a ciphertext and obtaining its

decryption under an unknown key.

In the attack, the attacker has a chance to enter one or more known encrypted texts into the

system and return back the resulting plaintexts. Using this the attacker can obtain the secret

key.

2.3 Enterprise Instant Messaging (EIM)

In a corporate environment when searching for an Instant Messaging service, companies have

a wide range to choose from. Today’s platforms that exist overall partly as a separate product

are IBM Lotus Sametime, Microsoft Exchange Instant Messaging (Now known under the name

Microsoft Lync), Oracle Beehive or something more extensive like Cisco Jabber and Salesforce

Chatter.

There also exist as a vacuum variant of established consumer Messenger Services such as Qtalk

Secure, which is about the known Messenger myENIGMA [50] originates. Another example is

the BlackBerry Enterprise Messenger which focuses on business environments, even though

BlackBerry Messenger exists for regular consumer as well. Previously, Instant Messaging

platforms used proprietary technology concepts as a base and offered no inter-operatability.

Today both IBM and Microsoft offer inter-operability between their EIM systems and some

public IM networks.

So IBM Lotus Sametime offers a WebSphere-based Sametime Gateway. It allows a plug-

in connection of the Third Party messengers with different Protocols such as SIP (Session

Initiation Protocol) and XMPP (Extensible Messaging and Presence Protocol). On this based

employees can chat with external Suppliers, whether this one Sametime client, Microsoft Lync,

the AOL Instant Messenger, Yahoo messenger or even use Google Hangout.

If EIM systems are only operated within the company the risks to safety, security and privacy

14

2.4. Related work in Secure Instant Messaging

are noticeably reduced. But if the services are outsourced in the cloud then these could be

threatening.They are normally customized with a corporate design and are usually compatible

with other products of the company. However, their biggest drawback is the lack of the ability

of communicating with the outside world, one of the advantages of non-corporate IMs.

The EIM management server dominate substantial features such as content filtering, encryp-

tion, message archiving and are legally compliant. The employees use their IM clients and the

IM network provides all the data including contact lists and internal and external colleagues

can communicate freely in these conditions.

When considering Enterprise products we have to consider international server use and differ-

ent compliance options. However, from various reasons not always easy to set. Considering a

scenario of a small business, with a limited budget, the cost of initial installation, operation

and maintenance is a significant investment.

For these cases cloud based products are offered, the initial price is comparatively less expen-

sive to set up and no to little investment in server hardware or software is required.

In the selection of cloud-tools however, dealing with privacy aspects is mandatory. So it is a

must that the selected tool complies to the country specific data protection requirements.

2.4 Related work in Secure Instant Messaging

With the massive number of users of instant messaging today, one server is not enough to

handle all the client requests, so multiple servers are used to handle the client requests. But,

even though there are multiple servers, conceptually, it can be thought of as a single server

as they perform the same action, bound by the same rules and monitored/controlled by the

same entity. The server is trusted. Hence, many SSL connections between the server and

all clients are required. But SSL has a few flaws when used here, it gives a privacy problem.

Each message is received by the server, this message is then decrypted at the server, and is

encrypted again and sent to the recipient.

The problem here is the server can read all the messages to and from a person. This data can

be mined and obtain private knowledge. This is a very big risk. An example where this is a risk

15

Chapter 2. State of the Art

is Nielsen / NetRating Japan [28], is considering Instant Messages as a possible advertisement

method, and offers a service that reports on Instant Messaging user populations and their

attributives.

Sometimes the server may sometimes may store the unencrypted messages and allow them to

be synced across all devices. A direct consequence of having unencrypted messages on server

may cause leakage of personal information, or even identity theft.

There are many commercial Instant Messaging applications that claim to be secure. The most

used secure way is use of SSL based encryption. SSL is used to provide confidentiality and

security by establishing a secure connection between client and the server.

Digital certificates can also be used for identification. Although these provide a high level of

security, these solutions may be are more expensive, for example a digital certificate must be

bought from VeriSign for public domain users, and typically puts the entire responsibility of

certificate distribution, verification, expiry, renewal,revocation etc. on end-users.

An issue with SSL is if a third party asks the certificate authority itself for a certificate of another

website/person and the certificate authority is either coerced or compelled to do so, Then

the entire concept of security using SSL breaks down. The server or the client have no way of

knowing who can read the information sent between them.

Kikuchi et al [32] proposed a new protocol for group key management that is directed towards

IM services. The protocol is an extension of Diffie-Hellman (DH) key agreement protocol.

It makes use of a distributed process in DH protocol. On starting the service, a user communi-

cates with the server to calculate and get his DH public key defined by a combination of both

the user and the server’s secret. When a user begins a new conversation, he picks up a random

number, on which a single message is computed and sent to the server.

Then, the server modifies the message so that a recipient can perform the DH key exchange

protocol with the sender’s public key every time a new on-line user comes. The advantage

with this scheme is to reduce the cost of initiator and to leave the rest computation before

a new user gets on-line. Unless the user’s secret key is revealed to the server, the encrypted

messages exchanged between members can’t be seen by the server. In order for real-time

16

2.4. Related work in Secure Instant Messaging

processing, a symmetric block cipher algorithm can be used for message encryption and the

message encryption key is then encrypted with the key established by the DH protocol.

This being a strong protocol however gives rise to the issue of its compatibility with the existing

consumer Instant Messaging service.

Xue Sun, Zhenjun Du and Rong Chen [33] proposed a hybrid encryption algorithm to secure

the IM system using the AES, SHA-1, and RSA algorithms to implement a hybrid encryption

policy. This was implemented over an Extensible Messaging and Presence Protocol (XMPP)

based IM server and Java based clients.

The IM system uses the client-server architecture. The server is made up of two parts: A

XMPP server and a backend database. The client connects to the server, then sends the user’s

requests to the server after the XML packaging program transforms the messages into the XML

format defined by XMPP. The server analyzes the requests, saves it to the database, and then

sends the message to the receiver that is specified by the sender. The mobile receiver client

receives the XML message and calls the XML parsing program to transform the XML format to

the data format that the mobile application could process, and finally displayed on the screen.

This system provides a method of security it does not seem viable as XMPP has disadvantages

for example it does not support offline chats: if a user is offline, normal chat messages are

dropped. Also since XMPP uses XML. Currently there is a trend to use JSON in place of XML.

JSON is more compact and can be easily loaded in JavaScript. It seems superior in every way -

it’s flexible, faster and more compact and in many cases easier to use (especially when working

with JavaScript).

Tsai-Yeh Tung et al. [34] proposed a method called Pandora messaging. This is presented as

an enhanced Secure Instant Messaging architecture complete with a self destructing feature.

It is also implemented over XMPP. When the transmitted messages constraints are satisfied,

the ephemeral key used for encryption will be deleted. Thus, the encrypted messages become

unrecoverable.

However this affects the ease of use and does not provide a proper method to appropriate

validate the keys. Again as all messages pass through the server and the Ephemeral key server

17

Chapter 2. State of the Art

is also controlled by the provider it can spoof keys which is a potential risk.

Chang-Ji Wang, Wen-Long Lin and Hai-Tao Lin [4] proposed an Instant Messaging System

Using Identity Based Cryptosystems. In an identity-based cryptosystem, the public key of an

entity can be easily computed from his identity information (e.g. e-mail address, IP address,

IM account, etc.), and the corresponding private key is generated by a trusted third party

named as private key generator (PKG), the private key is transferred from the PKG to the user

through a secure channel. One issue that this has is that the Private keys pass through the

server and the server could store them or read messages which is very undesirable.

A very important model used is off-the-record messaging. Its follows a real world scenario in

which two people are talking without any hidden recording medium. The model is designed

to achieve perfect forward secrecy [37] and repudiability.

“Perfect forward secrecy ensures that if an attacker was to compromise a

users private key, they would only be able to access data in transit protected

by that key and not any future transmitted data, as future data would not be

associated with that compromised key.

Scott Helme, Information Security Consultant ”AT&T in the year 2001 proposed and implemented a protocol for off-the-record email to

enhance security of emails [38]. Borisov et al. [13] proposed "off-the-record communication"

in the purview of Instant Messaging. The proposed "Off-the-record messaging" protocol pro-

vides authentication and confidentiality of messages and claims that when an IM conversation

is over, no one, including the communicating parties, can produce a record of the messages

exchanged. Users publish their public keys, in basic terms their digital signatures, beforehand

and this is also used to identify themselves.

An encryption key and a Message Authentication Code (MAC) key is established using the

Diffie-Hellman (DH) key agreement protocol. Every message uses a different encryption key.

A HMAC[39] key is used for authentication. Gaim now known as Pidgin [5] has a plug-in which

implements this protocol. However, this has a few shortcomings: Long term signature keys

18

2.5. Security in current Instant Messaging Applications

need to be maintained and casual users wont understand and might not maintain the keys

and since the encryption key and MAC key negotiation is a continuous process and this will

lead to a large overhead which is undesirable for a mobile client in which most clients use

mobile data.

2.5 Security in current Instant Messaging Applications

Some applications use key based encryption to prevent the server from reading the messages,

for example WhatsApp uses an RC4 key for encryption and a HMAC[39] key for authentication.

However, as a Dutch Computer Science and Mathematics student Thijs Alkemade [29] at

Utrecht University pointed out "...not only does WhatsApp use the same (RC4) encryption key

for the messages in both directions, but also the same HMAC key to authenticate messages."

However, MAC is not strong enough to detect all forms of tampering: an attacker could drop

specific messages, swap them or even transmit them back to the sender. This is a major

problem, considering that majority of the world as of now uses WhatsApp, he claims the users

are not very safe, messages can be sniffed out and decrypted!

The BlackBerry Messenger (BBM)[40] uses the Session Initiation Protocol (SIP) for commu-

nication and is based on the cloud architecture. All communications are wrapped in a SSL

/ TLS communication protocol and contacts are added either with the help of a QR code.

Few disadvantages include the contacts are not visible and does not offer any end-to-end

encryption.

Blackberry released another version called BBM Protected [41] for enterprises which offers

end-to-end encryption. BBM Protected introduces a new layer of encryption to the existing

BBM security model.[41].

The keys are generated on the client device, by the FIPS 140-2 [43] certified cryptographic

library, and are controlled by the enterprise. Each message uses a new random symmetric key

for encryption. A Triple DES 168-bit BBM scrambling key encrypts messages on the sender’s

smartphone, and is used to authenticate and decrypt messages on the recipient’s phone. All

communications are wrapped within the SSL / TLS communication protocol. This is targeted

strictly for enterprises but as of now is implemented only for Blackberry devices and lacks

19

Chapter 2. State of the Art

critical support for Android or iOS.

Telegram [30] is another Instant Messaging application that claims to fix some of the flaws of

WhatsApp. Telegram is a cloud-based and encrypted tool. It supports end-to-end encryption,

self destructing messages and a multi-data center infrastructure. The architecture has a few

servers all around the world routing messages. The MTProto [44] protocol is used in telegram.

However the protocol used in telegram has a flaw. Encryption takes place between the client

and the server, but not using TLS but using MTProto. Encryption takes place end to end

between clients, but lacks authentication, the server is thus capable of performing a Man-in-

the-middle (MITM) attack [31]. The threat model followed by Telegram is simple- Trust the

server. Messages that go through the network are encrypted, however nothing is known of the

server to server communication done, nor about their data storage system. But whatever goes

through the server is available in clear.

ChatSecure [45] is another app offered by the Guardian Project. It makes use of XMPP and

has a similar architecture of Facebook or Google’s IM apps. It is based on the cloud and its

own XMPP server. It offers an optional to use off-the-record messaging in addition to SSL /

TLS. Thus it claims to have end-to-end encryption and because of use of different protocols

an additional layer of security. However, the registration procedure is cumbersome and costly

which affects the ease of use.

TextSecure [14] offers a wide set of features and uses the Curve25519, AES-256, and HMAC-

SHA256 encryption algorithms. Messages are end-to-end encrypted and each user has a

unique fingerprint, and these fingerprints are shared when a user is contacted by another user

and a user will be warned if a user’s fingerprint ever changes. Only if an identity is verifiable

then communication is successful. Again this puts too much trust on one server.

Hoccer XO [36] is a German app which uses a custom communication protocol and is cloud

based as well. All communications are wrapped in SSL / TLS and uses RSA as well. However it

does not offer any local feature set.

Microsoft Lync [48], the successor from Microsoft Office Communicator, this uses the SIP,

TLS, Secure Real-time Transport Protocol (SRTP) and HTTPS communication protocols. It

has 3 varied architectures: Cloud or On-Premise or Hybrid. It is designed to work within

20

2.5. Security in current Instant Messaging Applications

an organization. The use of SRTP basically provides encryption, message authentication

and integrity, and replay protection to the real-time transport protocol (RTP) data in both

unicast and multicast applications. A disadvantage with SRTP is that the protocol cannot

setup encryption keys on its own [46]. Connections must be encrypted so that data cannot be

intercepted by an eavesdropper, but this is complicated because both clients must agree on

an encryption method before a secure communication can exist [47]. Also another possible

lack of feature in Lync is that it does not offer end-to-end encryption.

Skype [49] has been a major player in the web conferencing domain. Targeted first for general

users it is widely being used now in organizations as well for conferencing. It is cloud based

and all communications are secure using SSL / TLS, however it is still more a desktop based

application rather than a mobile based one and its IM features are looked over for its strong

VoIP features. Added to the fact it offers no end-to-end encryption makes it a little weak in the

domain of Secure IM.

MyEnigma [50] is a Secure Instant Messaging app that offers end-to-end encryption with the

help of keys. It also wraps all its communications using 256-bit SSL / TLS. However, it again

tells the user to trust the server and end users can never truly verify if the public key they have

is actually the public key of the person they are communicating with and not one that is given

by the server.

Surespot [51] also offers an end-to-end encryption and all communications are wrapped in

SSL. However in a general scenario When a user is created and its public keys uploaded to the

server, the server signs the public keys. Clients that download the public key then validate the

signature of the key against the hardcoded server public key in the client. As with myEnigma

the server can then change the key as it has control over it which is a big risk.

SIMSme [53] is a new Secure Instant Messenger by Deutsche Post AG. It offers an end-to-end

encryption system. I also provides an additional layer of security by using the self-destruct

feature. This causes messages to be automatically deleted from the recipient’s device. are

symmetrically encrypted on your phone using AES-256 and All messages transmitted to the

recipient via the SIMSme servers using SSL encryption. Contacts can then be verified by using

a QR code to confirm their identity. However, it does not offer forward secrecy.

21

Chapter 2. State of the Art

Threema [52] basically as of now offers the best-in-practice method. It uses an end-to-end

encryption and it uses a self developed communication protocol based on "Salt" which is

the Networking and Cryptography library (NaCl). In addition it offers an optional encryption

based on AES-256 on android devices. This allows the users to verify that the public key on the

recipients device is really their public key by scanning a QR code of the keys fingerprint. This

presents the fact the server can be trusted and is not sending spoofed keys. In addition to this

it claims to offer forward secrecy by allowing the users to change their key pairs at periodic

instances of time or at will.

22

3 Concept

The purpose of this chapter is to communicate the concept proposed by taking into

consideration the challenges and problems presented in the previous chapter. A clear description

of the requirements is given along with the proposed concept.

3.1 Initial Requirements

From the research done and results obtained in chapter 2, a Secure Instant Messaging app

must:

• Not send messages in clear text form.

• Never log and save any information regarding any message or its contents or session or

event on the server.

• Not rely on third party servers for message security and handling.

Thus conclusion that arose from the analysis is that a secure Instant Messaging app should

provide at bare minimum the following features as described in chapter 2, taking into account

all the above features provided by today’s trending applications and the features and concepts

proposed by the various knowledge exchanges on the topic it comes down to this:

• Authentication

23

Chapter 3. Concept

There should be a proper way of verifying that only a valid user is logged in and using

the service and there should not be any misuse. Most normal way would be with help

of a username and password. This coupled with a way to verify the public keys on the

device as well.

• Confidentiality

Confidentiality is the ability to keep a message unreadable by anyone other than the

intended recipient. This can be achieved through end-to-end encryption.

• Forward secrecy

An attacker who has captured the network traffic from the device will not be able to

decrypt the data even if he finds out the private key of the client.

• Repudiability

The ability of the receiver of something to prove to a third party that the sender really

did send the message. This can be done by signatures or signing the message.

• Trustworthiness

The ability of the user to trust the server that their messages are not read and that their

messages are not tampered with.

An application which offers these key features is said to follow the best practices in the industry

right now. The aim is to use these findings as a base and apply them to the corporate scenario.

3.2 Detailed Requirements

From the current state of research and development into the domain of secure IM, considering

all the positives and negatives of the systems in implemented and on paper.

3.2.1 Confidentiality

Message data passes between a client and the Wire Web service. All communication to and

from the server is wrapped in SSL / TLS. The messages are kept in the database to provide the

24

3.2. Detailed Requirements

multi-platform feature. Some of the data within the messages is considered to be sensitive in

nature.

Even though the data stored on the database is encrypted, the server has access to it and

can decrypt and read it. This is therefore a risk. Also, even though all communication on the

server is encrypted there is a risk that an attacker can gain access to sensitive data, either by

eavesdropping on the network or accessing the database.

End-to-End encryption is possibly the best solution to maintain confidentiality. The messages

can and should be encrypted on the client devices so only clients can decrypt them and the

server under no circumstances can decrypt them. This is paramount. So the next question

that arises is which method of encryption should be used? We have three possible options:

• Symmetric Encryption

• Asymmetric Encryption

• PGP Encryption

Symmetric Encryption

“ Symmetric encryption is the oldest and best-known technique. A secret

key is applied to the text of a message to change the content in a particular

way.

Microsoft ”A simple example of symmetric encryption might be achieved by just shifting each letter by a

number of places in the alphabet. As long as both sender and recipient know the secret key,

they can encrypt and decrypt all messages that use this key. In other words, the algorithms

used for cryptography that use the same keys for both encryption of plaintext and decryption

of ciphertext.

The main advantage of this method is its relatively fast because ecrypting and decrypting

symmetric key data is relatively easy to do, giving a good performance.

25

Chapter 3. Concept

Figure 3.1: Symmetric Encryption

It is secure, but have been susceptible to known-plaintext attack and chosen plaintext attacks.

Also because the key has to be shared a safe way must be used to give the key to the other

party. Giving rise to more chance of stealing of the key.

Asymmetric Encryption

“Asymmetric Encryption has the main advantage that it is relatively fast

because ecrypting and decrypting symmetric key data is relatively easy to

do, giving a good performance.

Hitachi ”In asymmetric encryption there is a key pair. A public key is made freely available to anyone

who might want to send you a message. A private key is kept secret. Any message that has to

be to a user is first encrypted using the public key can only be decrypted by applying the same

algorithm, but by using the matching private key. This means that public keys can be passed

easily over the Internet as they are meant to be "public".

A problem with asymmetric encryption, however, is that it is slower than symmetric encryption.

It requires far more processing power to both encrypt and decrypt the content of the message.

26

3.2. Detailed Requirements

Figure 3.2: Asymmetric Encryption

PGP Based Encryption

PGP stands for Pretty Good Privacy. It is the most widely used software in the the world for the

encryption of electronic mail.

It basically combines the advantages of asymmetric and symmetric encryption, downplaying

the disadvantages of both.

It uses public key cryptography to let you communicate securely with people who’ve never

met, without the prior exchange of keys over secure channels. [22]

A basic working can be described as follows: If user Alice wishes to send a message to Bob,

PGP first takes plaintext and compresses it. This is done so it reduces the patterns found in

languages. PGP creates a session key , this is done by taking a random number and is run

through a symmetric encryption algorithm such as Triple DES, Twofish, CAST, or AES, this

is basically a one time secret key. This key is symmetric so the encryption is very fast and

secure to get a ciphertext. The session key is then encrypted to the receiver (Bob’s) public key,

using assymetric key encryption for example the Diffie-Hellman or RSA. The entire data is

then transmitted to the recipient.

27

Chapter 3. Concept

Figure 3.3: Working of PGP

When Bob receives this message, the reverse process takes place. The session key is obtained

by decrypting using Bob’s private key the session key is then used to decrypt the encrypted

data to get the original message. [23]

Advantages of PGP

Some of the plus points of PGP include:

• PGP ties together the advantages of public key and symmetric cryptography.

• The combination of asymmetric and symmetric encryption methods combines the

convenience of public-key encryption with the speed of conventional encryption and

provides a feasible solution to the disadvantages of both.

• Using conventional symmetric encryption is about 100-1,000 times faster than public-

28

3.2. Detailed Requirements

key encryption.

• Public-key encryption provides a solution to key distribution and data transmission

issues when using symmetric encryption.

• Performance and key distribution are improved without any cut back to security.

Disadvantages of PGP

Though PGP has many advantages it has few flaws too. Some of them include:

• PGP is slightly complex and difficult to understand for a layman.

• Both parties should use the same version of PGP.

Thus, symmetric though faster requires sharing the key, and since a client has to share his key

with the recipient and the key may get intercepted. This inadvertently becomes a risk.

Asymmetric encryption is powerful and the concept of public and private key is appealing, as

the private key remains only on the client devices while the public key can be shared and used

for encryption. The server will not be able to decrypt the messages on its end and only the

intended clients will be able to decrypt the messages. However, it has efficiency issues. So the

encryption method needed should have public and private key pairs and have relatively good

efficiency, thus the solution should be PGP. Since PGP uses advantages of both symmetric and

asymmetric encryption and cuts on the disadvantages, PGP is a good practice to follow and

this seems to be the approach that was decided.

3.2.2 Authentication

Considering that we use PGP and make use the concept of public and private keys one possible

risk scenario is in which the server cannot be trusted. For example, Alice wants to use the IM

services and generates a key pair. Alice sends her public key to the server so other users who

wish to communicate with her can get the public key from there. However, the server creates

another key pair and says that the new public key is Alice’s public key.

29

Chapter 3. Concept

Figure 3.4: Server spoofs Alice’s public key

Now of Bob wants to communicate with Alice, he requests Alice’s public key from the server.

The server sends the key it generated and not Alice’s actual public key.

Figure 3.5: Server sends spoofed public key

Now Bob needs to send a message to Alice so he encrypts a message with this key and sends

it to the server, the server gets this message, decrypts it and reads it and possibly saves it

somewhere. Then it encrypts the message again with Alice’s actual public key and sends it to

Alice. Alice is able to decrypt the message and read it. However both Bob and Alice are clueless

that the message was decrypted and read by the server! This is a form of man-in-the-middle

attack. It is illustrated in figure 3.6.

So steps have to be taken to counter this. One of the methods is to make it possible for the

users to verify their public keys. But public keys are massive collection of "junk" characters for

the normal eye. They are long and even when ASCII armored are not very easy for humans to

understand or compare. Thus here the concept of a fingerprints comes into play.

30

3.2. Detailed Requirements

Figure 3.6: Man-in-the-middle attack

“A fingerprint is a shorter digest of the key formatted in a way that makes it

easier for humans to read and compare.

Apache ”Thus allowing users to verify fingerprints will allow users to be sure the server is not spoofing

the public keys and the public keys are indeed genuine and valid. This is an important key

point that has to be considered.

3.2.3 Forward Secrecy

The concept of forward secrecy is that even if a user gets the private key of another user he

should not be able to decrypt any older messages or any future messages. An attacker who has

captured the network traffic will not be able to decrypt it even if he finds out the long-term

secret key of the client or the server after the fact.

In the section 3.2.1 it was showed that PGP is suitable approach to follow for the Secure Instant

Messaging system, but since it uses long-term public keys it makes it a risk. The use of SSL /

31

Chapter 3. Concept

TLS makes sure that forward secrecy is maintained on the network connection but not on the

end-to-end layer.

One solution to this problem is to not use long-term keys. New public keys can be generated

at regular intervals or at the user’s preference if he ever thinks his key is compromised. This is

another point that has to be considered.

3.2.4 Repudiability

Once a message is sent by a user how do we know it is genuinely from that user? Here the

concept of non-repudiation comes into the picture.

“Non-repudiation refers to a state of affairs where the purported maker of

a statement will not be able to successfully challenge the validity of the

statement or contract.[57]

Wikipedia ”So how can we achieve repudiability? The answer is through a digital signature or signing

the message. The question is why not use a digital certificate. If a third party wants to send a

message by spoofing another user, they can get a "valid" certificate from a certificate authority

but this is spoofing the user. So digital certificates have a few flaws when trying to maintain

confidentiality against the administrator.

For signing a message the concept of digital signatures comes into play.

Digital Signatures

“A digital signature (not to be confused with a digital certificate) is an elec-

tronic rather than a written signature that can be used by someone to authen-

ticate the identity of the sender of a message or of the signer of a document.

Margaret Rouse, SearchSecurity, TechTarget ”
32

3.2. Detailed Requirements

Digital signature is the process by which a message is authenticated that is proving that a

message is actually coming from the given sender. Digital signatures enable the recipient

of information to verify the authenticity of the information’s origin, and also verify that the

information is intact. [13] For instance, suppose that Alice wants to digitally sign a message to

Bob. To do so, she uses her private-key to sign the message.

Figure 3.7: Working of Digital Signatures

Since Alice’s public-key is the only key that can verify that message, a successful Digital

Signature Verification can be performed, meaning that there is no doubt that it is Alice sent

the message as her private key was used to sign the message.

A digital signature is used to sign the message and is part of the PGP key and this can then

again be verified and validated. Thus, this coupled with a PGP key based encryption should

provide another layer of authentication as well as satisfy the non repudiability.

3.2.5 Trustworthiness

Since one issue is trying to trust that the server will not tamper or spoof the users public key or

"fake" the public key.

To achieve security against the server thus another precaution that can be taken to keep a

users public keys secure is to de-centralize the servers. In other words keep the server which

stores the public keys separate in other words an independent public key repository. Users

can verify their digital fingerprints in real time and this adds another layer of security.

33

Chapter 3. Concept

3.3 Secure IM Concept

In the earlier section we detailed the requirements that Secure IM system must provide and

use this and the research done on the current technologies and propose a concept which can

be applied to the current enterprise IM environment.

For confidentiality, PGP seems the best bet. Each and every user should have a key-pair. The

public key is to be stored on a server so it can be accessed by other devices. Now the key server

should be kept independent from the IM server. This is to add the additional layer of security.

So first considering authentication, each and every message sent is signed and verified by the

recipient. This should provide a strong basis for authentication.

Now there has to be a way in which the public key must be verified by the user itself as genuine

has his or her own. This can be done using fingerprints. But how can fingerprints be verified?

Sending them across the same channel as IM messages can lead to manipulation or spoofing

by the server which is undesirable, so it is better people meet and verify fingerprints or send

them across another channel. Email seems to be a good way of sending the fingerprint which

could work, but one problem could be that people don’t like comparing long strings. For

example a fingerprint looks like this

5A967C04A8F33C9D4F60145248B8AA50C7C384E2

Now comparing this manually can be hard, so an easier way to this is through a quick response

(QR) code. A QR code can easily be scanned by a camera and compared by the app itself. This

seems to be a good approach to follow.

Now for maintaining forward secrecy there should be an option to allow the user to regenerate

his key pair and upload it to the key to the key server.

For maintaining authentication since we are using PGP, the public key has a encryption key

and a signature key. Each and every message should be signed so it can be verified and thus

checked and we can thus also provides non-repudiation, which means that it prevents the

sender from claiming that they did not actually send the message.

34

4 Implementation

This chapter details on how the design principles were applied to the SAP Wire prototype.

It details the libraries used and also details the challenges faced during implementation.

4.1 Application of concept

In the previous chapter a concept of the Secure IM system was proposed. Now the focus is to

implement the concept. We first look at the Instant Messaging scenario at SAP SE and provide

a detailed feature set to be applied to it.

4.2 Instant Messaging at SAP SE

SAP SE being a massive global organization spread across many countries world wide commu-

nication between different clients and employees is a must. For most office communications

Microsoft Lync is used while for conferencing Cisco WebEx is used.

With the development of the HANA Cloud Platform, a new product of SAP that offers a Java

Platform which you can use to develop applications "on the cloud", SAP worked on a project

called Twaddle which later became SAP Wire and was released as an internal Instant Messaging

app. One of its main features is to keep conversations in sync with all the devices.

The advantage of using Wire over Lync or WhatsApp is both WhatsApp and Lync cannot be

35

Chapter 4. Implementation

used on multiple devices. WhatsApp is a 3rd party app which is not permitted on SAP devices

because all of your chats are not 100% secure. Lync for one does not provide persistent chats

like Wire does. The target was to give Wire the best of WhatsApp and Lync and then some

more.

Wire currently offers a web based desktop client and a web based mobile client, a stand alone

JAVA based desktop client,an iOS client and an android app (in-development) allows the user

to keep track of his conversation and requirements across all media.

4.3 Technology

4.3.1 The SAP HANA Cloud Platform

The SAP HANA Cloud Platform is the in-memory Platform-as-a-Service offering from SAP,

enables customers and developers to build, extend, and run applications on SAP HANA in the

cloud. [7]

Definition

SAP HANA Cloud Platform is an in-memory cloud platform based on open standards. It

provides access to a feature-rich, easy-to-use development environment in the cloud. The

platform includes a comprehensive set of services for integration, enterprise mobility, collabo-

ration, and analytics.

SAP HANA Cloud Platform enables customers and partners to rapidly build, deploy, and

manage cloud-based enterprise applications that complement and extend solutions, either

on-premise or on-demand.

As a Platform-as-a-Service operated by SAP, it frees the end user from any infrastructure, costs

and offers state-of-the art quality of service - availability, scalability, multitenancy.

Features

The HANA Cloud platform offers a lot of features:

36

4.3. Technology

Figure 4.1: SAP HANA Cloud Platform

• Runtime container for applications: Applications developed on SAP HANA Cloud

Platform run in a modular and lightweight runtime container. The platform provides a

secure, scalable runtime environment with reusable platform services.

• Integration with SAP and non-SAP software: SAP HANA Cloud Platform facilitates se-

cure integration with on-premise systems running software from SAP and other vendors.

Using the platform services, such as the connectivity service, applications can establish

secure connections to on-premise solutions, enabling integration scenarios with your

cloud based applications.

• In-memory persistence: SAP HANA Cloud Platform includes persistence powered by

SAP HANA. SAP HANA DB Services delivers fast provisioning of SAP HANA and hardware

in the cloud. This means you can quickly build real-time analytic apps using SAP HANA

development capabilities.

• SAP HANA App Services: SAP HANA App Services builds on SAP HANA DB Services,

and allows you to create, deploy, and extend real-time consumer-grade apps in the

cloud. Leverage comprehensive services for mobility, collaboration, Big Data, and more.

• Secure data: Comprehensive, multilevel security measures have been built into SAP

HANA Cloud Platform. This security is engineered to protect your mission critical

37

Chapter 4. Implementation

business data and assets and to provide the necessary industry standard compliance

certifications.

Services

SAP HANA Cloud Platform provides the following services:

Service Description
Connectivity Service The connectivity service provides a secure, reliable and easy-to-

consume access to business systems, running either on-premise
or in a cloud. SAP HANA Cloud provides a trusted channel
to your business systems, while at the same time your IT has
complete control and auditability of what is technically exposed
to the on-demand world.

Persistence Service The persistence service provides in-memory and relational per-
sistence. All maintenance activities, such as data replication,
backup and recovery, are handled by the platform.

Document Service The Document service provides a content repository for unstruc-
tured or semi-structured content. Applications access it using
the OASIS standard protocol Content Management Interoper-
ability Services (CMIS). The applications consume the service
using the provided client library.

Identity Service The identity service is responsible for identity management and
authentication on SAP HANA Cloud. It also enables Single Sign-
On (SSO) between applications running on SAP HANA Cloud,
based on the Security Assertion Markup Language (SAML) 2.0.
It has already more than 2.5 million users which could access
applications hosted on SAP HANA Cloud.

Feedback Service The feedback service provides developers, customers, and part-
ners with the option to collect end user feedback for their appli-
cations. The feedback service also delivers detailed text analysis
of user sentiment (positive, negative, or neutral). The feedback
service consists of a client API exposed through the HTTPS REST
protocol and of administration and analysis user interface. The
feedback service is a beta functionality and is available on the
SAP HANA Cloud Platform trial landscape.

Table 4.1: SAP HANA Cloud Platform Features

38

4.3. Technology

Accounts

SAP HANA Cloud Platform provides free and paid accounts, the capability to create additional

accounts on a self-service basis, and a member management feature for setting up teams.

Development

Developers can build highly scalable applications using one of the following programming

models:

• Java EE - SAP HANA Cloud Platform is Java EE 6 Web Profile certified. Java EE applica-

tions can be developed just like for any application server. Also existing Java applications

easily run on the platform.

• SAP HANA -The SAP HANA development tools can be used to create comprehensive

analytical models and build applications with SAP HANA programmatic interfaces and

integrated development environment.

4.3.2 The Android Operating System

“Android was built from the ground up with the explicit goal to be the first

open, complete, and free platform created specifically for mobile devices.

Ableson F. et al., Unlocking Android, page 4. ”
What is Android?

Android is an open system. Any handset manufacturer can use Android if they follow the

agreement stated in the Software Development Kit (SDK). There are no restrictions or require-

ment for the handset manufacturer to share their extensions with anyone else, as there are in

other open source software, if they leave the Linux kernel as is. The Linux kernel is under a

different and more restricted license than Android. [17]

Android is a software environment and not a hardware platform, which includes an OS, built

39

Chapter 4. Implementation

on Linux kernel-based OS hosting the Dalvik virtual machine. The Dalvik virtual machine

runs Android applications as instances of the virtual machine. Android contains a rich user

interface, application framework, Java class libraries and multimedia support. Android also

comes with built-in applications containing features such as short message service function-

ality (messaging), phone capabilities and an address book (contacts). [17]. Every Android

application runs on its own instance of the Dalvik virtual machine.

Android Versions

The version history of the Android mobile operating system began with the release of the

Android beta in November 2007. The first commercial version, Android 1.0, was released in

September 2008. Android is under ongoing development by Google and the Open Handset

Alliance (OHA), and has seen a number of updates to its base operating system since its initial

release.[18] The current version is 4.4 KitKat.

Development

The Android SDK makes use of the Java programming language similar to Java Standard Edi-

tion (J2SE) called the Java Android library. The syntax is the same as Java in terms of operands,

selections, iterations, file handling and more. The more specific Android classes and packages

use other names that are not similar to Java editions, such as the Activity Class and the View

Class.[1]

Android SDK

The Android SDK provides you the API libraries and developer tools necessary to build, test,

and debug apps for Android.[6] The SDK is mandatory to android developers. It is a collection

of all packages, application framework and classes libraries the developer needs to develop an

android application.

Android studio

Android Studio (Beta) is a new Android development environment based on IntelliJ IDEA. It

provides new features and improvements over Eclipse ADT and will be the official Android

40

4.4. SAP Wire

IDE once it’s ready.[1]

4.4 SAP Wire

According to Martin Lang, Manager at Global IT Mobile in charge of development of SAP Wire

is "SAP Wire is quite similar to WhatsApp, one of the most successful consumer chat apps ever

with 300 million users. However it’s built entirely with SAP technology and with the enterprise

in mind. So in a way it’s more than just a chat client, it’s a platform, that doesn’t just facilitate

chats, but it can also connect to other apps and business processes to get a time sensitive question

answered."

SAP Wire began as a thesis project called Twaddle developed by SAP Global IT Mobile Center

of Excellence (CoE). It was designed to be a mobile chatapp that can be used to send short

messages between two or more users via their mobile devices. The HANA Cloud is used as the

back-end: It stores and provides all the messages, users and chatrooms. The application was

initially only available for iPhones and iPads.

The project then built and redesigned into a internal product called SAP Wire. Its functionality

was extended to serve desktop users as well and a web based client, a desktop client and the

iOS client were re-designed and rolled out. An android app is developed but it is still in beta

and is not yet released for general use.

This makes Wire multi-platform. This means one might start a chat on their iPhone, continue

it on an iPad and then finish it on their desktop.

It is available on http://sapwire.hana.ondemand.com

4.4.1 Features

SAP Wire provides a wide feature set which includes:

• Send text and images, share your location on a map.

• Group Chats: Allows for Group conversations with multiple persons. Add or remove

41

Chapter 4. Implementation

group participants, change group subject and set a group icon.

• Public Chats: Discover and create public chats based on events, locations, topics inside

SAP.

• Persistent Chats: Access to all chat history on any device.

• Cloud Storage: Ability to access all of ones Wire messages and media from multiple

devices.

• Secure: All of ones chats are fully encrypted on the server side and stored on the HANA

Cloud

• Single-Sign-On: With Single-Sign-On, a secure login service is provided without never

have to worry about security even without having to remember any long passwords.

• Always connected: With push notifications, Wire is always ON and always connected.

• Contact Synchronization: Ability to find other Wire users automatically.

• Other features include the ability to set profile photo, set custom wallpaper, Email chat

history and much more.

4.4.2 Functionality

The app has a login screen where you enter your ID and your password. This is linked to the

users SCN account and uses SAP Single Sign On (SSO).

If a new user logs in for the first time, the system detects a new username and a user will be

created on the database. When a user wishes to communicate with another user he searches

and selects his / her (the recipient) contact and a chatroom is created with the two users as

the participants. A chatroom can also have multiple participants or a group chat. All messages

between the two users are stored in that chatroom. These chatrooms are available across all

devices and all the messages are encrypted at the server and stored in a backend encrypted

database.

42

4.4. SAP Wire

4.4.3 Data Model

The data model used is quite simple to understand. There are of users. Many users are in

many chat rooms and the other way round. A new message belongs to the user who sent it

and to the chat room where it was posted. Thereby there is the possibility to get all messages

of one chat room but also to know who sent it.

Figure 4.2: Data model of SAP Wire

4.4.4 Architecture

A high level overview of the architecture of SAP Wire is shown below. In the middle of the

figure beneath you can see the SAP HANA Cloud with a servlet and a database. The devices on

the left-hand side sends a message to our servlet. All communications are wrapped in SSL /

TLS authenticated by the HTTP-Basic-Authentication or the SAP SAML 2.0 authentication.

When the message arrives at the server it is encrypted and stored in the database belonging to

HANA Cloud in this case the MaxDB database. This database also stores the users, chat rooms

and all messages.

The devices on the right-hand side asks the servlet for messages, the message is retrieved from

the database and decrypted and sent to the recipient device which displays the new message

on the screen. Also a push notification service is implemented so that the recipient is notified

for a new message.

43

Chapter 4. Implementation

Figure 4.3: SAP Wire Architecture

4.4.5 Wire’s Web Service

REST calls are used for retrieving and posting data to the server. The data is pushed into the

database with the servlet. This servlet acts like a web service: the app can ask for or send data

and gets a response. To exchange the data between app and servlet we decided to use JSON.

The great advantage of JSON is that its overload is very low (especially compared to XML).

The request-JSON is transported to the servlet via an HTTP-POST. The response-JSON is then

returned to the app via the HTTP-response.

Every request-JSON includes a string parameter called "function". In this parameter you

specify the task of the web service: e.g. return all users- "getusers" or return messages-

"getmessages" for a given chat room. Also a function that creates resources, e.g. post a

message- "postmessage" or create a chat room- "createchatroom". Depending on the

function there have to be other parameters in the request-JSON, for example when using

"getmessages" one of the paramters should be the chat room ID. Nearly every function has

to know for which user this function is called. This is achieved through the SAP SSO.

Depending on the requested function the other parameters of the response-JSON can include

e.g. a list of users or messages in a chat room. The data storage on the server side is achieved

using the Java Persistence API (JPA) [54] to save all the data on the backend database which is

necessary for the web service.

44

4.4. SAP Wire

Figure 4.4: SAP Wire Web service working

4.4.6 The Web Based App

The SAP Wire app is built on SAP UI5 [55], a HTML5-based front-end framework from SAP

which helps you to build desktop and mobile web apps. It is available on

https://sapwire.hana.ondemand.com/desktop for the desktop web client and is available on

mobile devices using the mobile web browser’s https://sapwire.hana.ondemand.com/mobile.

The Web App are communicates with HANA Cloud by using a RESTful webservice via HTTP.

This webservice is based on a request-response-architecture. This is coupled with a HTML5

WebSocket through which a consistent connection is opened with the backend which stays

open over the whole time the client is running.

After a WebSocket connection is opened the client can send requests to the server, and also

the server can send requests to the client. Only one connection handshake per session is

necessary. The client doesn’t have to check for new messages repeatedly, it just waits until the

server notifies when new messages have arrived.

Once a client sends a message, the backend forwards this messages to all corresponding clients

which are currently online right away - in real-time.

45

Chapter 4. Implementation

Figure 4.5: SAP Wire Desktop Web App and Mobile Web App

4.4.7 The Wire Android App and iOS App

A native android app is developed but not released for general use. It is still in beta and

continuously worked upon and improved. The app makes use of the Wire REST calls to

perform all actions.

The App is built using the SAP Mobile UI toolkit and theme so it matches the UI5 design and

feel. The App interface is quite simple and is made easy to use. On starting the app a login

screen is displayed. The user can login by manually using his SCN username and password or

the Single Sign-On with a client side device certificate.

Figure 4.6: The iOS App

On logging in, if the user already exists his chatrooms, messages

and settings are synced from the server. If a user logs in for the

first time, then a user is created in the backend.

On opening a chatroom a user can continue an existing con-

versation or start a new conversation or group chat with other

users. The app also allows the user to create a public group chat.

The working is very similar to the web based app as they both

use the same REST calls and WebSocket connections. The app

makes use of the content wrapper and content manager and

46

4.5. Features to be added

Google’s account manager for maintaining and saving the SAP

Wire account. This saves the user from logging in every time.

Figure 4.7: The Android App

A native App is developed for Apple devices basically the iPhone

and the iPad. The user is authenticated uses native SAML2 au-

thentication. Initially when the app was still called Twaddle it

used to use push notifications to notify the clients that a mes-

sage had arrived on the client. But as the app was re-invented

to SAP Wire, consideration was taken to the load the server

will have and it was modified to work like the web app or the

android app, WebSocket connections are used.

SAP Wire is a good tool. Developed in-house it is continuously

worked upon. It has a decent and ever increasing user base at SAP. The android app seems to

be an ideal start point for development of a Secure Instant Messaging app as being still in beta

its feature set can continuously being expanded upon.

Since Wire is based on the HANA cloud its security mechanisms include SSL / TLS and the

messages are stored on the database are encrypted.

So for adding the Secure IM concept and its security feature set the, android app seems a great

place to start.

4.5 Features to be added

First a server must be created to hold the public keys. This is called the key repository. The

server has a database with a simple table having one table with the field for ID (E-mail) and

public key. Along with this there should be REST methods to retrieve the public key based on

ID, another to post the public key and finally one which retrieves all public keys.

Since PGP has to be added to the IM system, when the app is started it should check if keys

are present, if not it should generate a key pair. Once this is done, the public key must be

uploaded to the key repository server.

47

Chapter 4. Implementation

Before each message is sent to the server to be delivered to another user, the client must first

request the recipients public key from the server, the second step is the message is signed

by the user and is encrypted with the public key of the recipient and it is then delivered to

the recipients device. The recipient then decrypts the message with his own private key and

verifies the message. If all is valid the message should be shown or else dropped.

In addition to this the ability to check public key fingerprints is to be added:

1. A QR code generator to convert the fingerprint to a QR Code

2. Ability to scan and verify QR codes

3. Ability to send fingerprint through e-mail

These design features are in sync with the requirements and should satisfy the best practice

used in Secure IM in a corporate environment.

4.5.1 Assumptions

A few assumptions are made:

• The best features available on the android app have been picked up and added to the

basic prototype of this application

• Libraries are used to implement the PGP based encryption and decryption

• The new features implemented do not break any existing functionality is designed in

such a way that the security features can be deactivated or activated as required

4.5.2 Target Audience

The target audience of this application are SAP Employees. The app is now just released

for internal use and is in its pilot phase. With the growing need of privacy the app will be

productive for private conversations and add another additional level of security for office

conversations.

48

4.6. Use Cases

4.6 Use Cases

4.6.1 Actors

Figure 4.8: Actor and a use case

An actors is a user of the system. It includes humans as a process. He is the one who initiates

the event that leads the use case to begin. The arrow also is an indicator that the interaction

starts between the user and the use case. The scope of their action and their overall role in the

system defines the set of Use Cases an actor can access.

4.6.2 Use Case Models

A use case is a single unit of meaningful work. It is built with a specific functionality for the

proposed system. The keyword UseCase can also be used to define a use case. The actors

are mainly related to the usecases. Through them the progress of the application could be

well known. It describes the basic functionality in a layman’s understanding. It also shows us

the requirements of the applications and the constraints associated with it as to what are the

functionality a user can access.

There are 4 use cases considered:

• UseCase for Starting the App

• UseCase for Sending a Message

• UseCase for Receiving a Message

• UseCase for Verifying a Public Key

49

Chapter 4. Implementation

UseCase for Starting the App

The following UseCase shows the work-flow of the procedure of starting the app and invariably

generating the key-pairs.

Figure 4.9: UseCase for Starting the App

UseCase for Sending a Message

The following UseCase shows the work-flow of the procedure of sending messages to a recipi-

ent.

Figure 4.10: UseCase for Sending a Message

50

4.6. Use Cases

UseCase for Receiving a Message

The following UseCase shows the work-flow of the procedure of receiving messages from a

sender.

Figure 4.11: UseCase for Receiving a Message

UseCase for Verifying a Public Key

The following UseCase shows the work-flow of the procedure of verifying the public key of a

user on a recipient’s device.

Figure 4.12: UseCase for Verify Public Key

51

Chapter 4. Implementation

4.7 Programming languages and tools

Since the product being enhanced is SAP Wire which is based on the HANA Cloud and also

since the client device is an android app the programming language used is JAVA. For all

applications developed on the HANA Cloud the official IDE supported is Eclipse with the

HANA SDK Toolkit. For the android app the IDE used is IntelliJ because of its powerful

visualization tools and official Android support.

The devices used for development are:

1. HTC One S, running Android version 4.2 (Jelly Bean)

2. Samsung Galaxy S2, running Android version 4.1 (Ice Cream Sandwich)

3. Google Nexus 7, 2012, running Android version 4.4 (KitKat)

The IM service and the key repository developed are hosted on the SAP HANA Cloud Platform

Trial account available on http://hanatrial.ondemand.com. Also the local run-time of the SAP

HANA Cloud platform is used for local testing.

4.8 PGP Encryption and Decryption

Since PGP has to be implemented and is a core part of the development, the first step is to

find a library that provides PGP encryption and decryption features. For this purpose we use

Bouncy Castle[58].

Bouncy Castle is a collection of APIs used in cryptography. It includes APIs for both the Java

and the C# programming languages.

According to the Bouncy castle website, The Bouncy Castle APIs currently consist of the
following[58]

• A lightweight cryptography API for Java and C#.

• A provider for the Java Cryptography Extension and the Java Cryptography Architecture.

• A clean room implementation of the JCE 1.2.1.

52

4.9. SAP Wire Key Repository

• A library for reading and writing encoded ASN.1 objects.

• Lightweight APIs for TLS (RFC 2246, RFC 4346) and DTLS (RFC 4347).

• Generators for Version 1 and Version 3 X.509 certificates, Version 2 CRLs, and PKCS12
files.

• Generators for Version 2 X.509 attribute certificates.

• Generators/Processors for S/MIME and CMS (PKCS7/RFC 3852).

• Generators/Processors for OCSP (RFC 2560).

• Generators/Processors for TSP (RFC 3161 & RFC 5544).

• Generators/Processors for CMP and CRMF (RFC 4210 & RFC 4211).

• Generators/Processors for OpenPGP (RFC 4880).

• Generators/Processors for Extended Access Control (EAC).

• Generators/Processors for Data Validation and Certification Server (DVCS) - RFC 3029.

• A signed jar version suitable for JDK 1.4-1.7 and the Sun JCE.

It is distributed under the MIT License and is used as a base for implementing PGP based

encryption and decryption.

The implementation is explained more in detail in the following sections.

4.9 SAP Wire Key Repository

The SAP Wire server as described in the earlier chapter maintains all the users and the respec-

tive chat rooms and other details, but does not contain a place to store key data. So a simple

key repository was created on the HANA Cloud platform. The persistence service is used for

data storage. The persistence service makes available both in-memory and relational database

storage to applications that are hosted on SAP HANA Cloud Platform. The database used is

SAP HANA. Since all communication to and from web applications hosted on the HANA Cloud

are wrapped in SSL/TLS the communication is considered secure.

For simplicity reasons JDBC is used. A table Person is used with the following fields: ID,

PUBLICKEY of the type Varchar and having the sizes 255, 2555 characters respectively.

Three classes are created for this purpose as described below.

53

Chapter 4. Implementation

Figure 4.13: SAP Wire Key Repository UML

4.9.1 Person

The person class is the class file with two fields ID and PUBLICKEY of the type string. The

other methods this class has are accessors and modifiers for ID and PUBLICKEY.

4.9.2 PersonDAO

This is the person data access object class. It contains the SQL queries which are needed to

access the data from the database. It has methods which create the table PERSONS, one which

checks if the table PERSONS exists, a select all persons method which selects all the data from

the table, a method called get key which retrieves the key based on the ID and also a method

to add a person to the database.

54

4.10. New Functionality

4.9.3 PersistenceWithJDBCServlet

This class is the servlet class and it extends the HttpServlet. It has a GET method implemented

which returns all the entries if an email is not passed as a parameter or it sends the public key

of the ID passed.

Also a POST method is implemented which will add the a person (email and public key) to the

database. The servlet checks if an entry already exists, if it does then the value is updated or a

new entry is created in the database. The servlet makes use of an SAP UI5 to display all the

entries. But its not feasible to show the entire public key, so we make use of the bouncy castle

library to read the public key. Just the signature key and few of its characteristics are displayed.

The fields include: Email, Public key ID, Algorithm used (e.g. DSA, RSA, Elgamal, ECDSA etc.),

Key size in bytes, Creation date and time of the key and the Public key fingerprint.

4.10 New Functionality

Confidentiality, Repudiability and Forward Secrecy

For implementing confidentiality, we make use of encryption and decryption of messages.

For this purpose we make use of the Bouncy Castle libraries. Now the Android system comes

with the bouncy castle in-built. But it is a stripped down version of Bouncy Castle and using

the APIs might be a little complicated and it might not have the functionality desired. Also it

makes installing an updated version of the libraries difficult due to classloader conflicts[59].

Therefore we have make use of Spongy Castle [59]. Due to class name conflicts, this prevents

Android applications from including and using the official release of Bouncy Castle as-is.

Spongy Castle is the same stock Bouncy Castle libraries repackaged with a couple of small

changes to make it work with Android apps. According to the Spongy Castle website, the

changes made are:

• All package names have been moved from org.bouncycastle.* to org.spongycastle.* -
to avoid classloader conflicts

• The Java Security API Provider name is now SC rather than BC

• No class names change, so the BouncyCastleProvider class remains Bouncy, not Spongy,

55

Chapter 4. Implementation

but moves to the org.spongycastle.jce.provider package.

We make use of 4 libraries for this purpose:

• core (jar) - Core lightweight API

• prov (jar) - JCE provider (requires core)

• pkix (jar) - PKIX, CMS, EAC, TSP, PKCS, OCSP, CMP, and CRMF APIs (requires prov)

• pg (jar) - OpenPGP API (requires prov)

Authentication

For authentication, SAP Wire already provides a good authentication using SAML2 and SAP

SSO. This allows users to sign in using their SCN Account details or their SAP certificate. The

account is linked to the Android accounts interface.

Now for verification of public keys, it was proposed to verify digital signatures. Now since

we need to verify public keys the two methods used are sending the fingerprint via e-mail or

through scanning the fingerprint as a QR code.

For the purpose of generating and scanning the QR code the ZXing ("zebra crossing")[60]

library. According to the website, "The ZXing ("zebra crossing") is an open-source, multi-

format 1D/2D barcode image processing library implemented in Java."

The provide the API to generate bar codes and also the ability to scan and read bar codes using

their Barcode Scanner app which is available on Google Play.[61]

4.11 Basic Cryptography Prototype

To start implementing the app, first it is a pre requisite to understand the working of the

Spongy Castle API.

To achieve this it was decided to allow to run the basic PGP encryption/decryption process on

a test string. Thus, to begin with an app was created with a limited UI which just implements

a basic function: It generates a key pair on start-up and based on user input string, the app

56

4.12. The Wire Android App

will first sign the data with the public key generated and encrypt the data. Then it will decrypt

the data and verify the signature and the decrypted string is compared with the input string.

The match proves that the process is working.

This implementation can therefore be easily ported to the wire app as it can run in isolation.

4.12 The Wire Android App

The Wire Android app is built using native android code. Now since the existing functionality

must not break, the new features must be added in such a way they stand independent from

the app. So it would be like addition of a layer of security to the app.

An overall activity diagram of the entire process is shown below.

Figure 4.14: SAP Wire Activity Diagram

Since work has to be done on SAP Wire’s Android App, it makes no sense trying to make

changes to the Wire API and the Cloud application. But since the Wire application is hosted

for public use on the official SAP HANA Cloud platform it makes no point trying to modify it

57

Chapter 4. Implementation

there. So another instance of SAP Wire was setup on the trial HANA Cloud Platform to act as a

server for the android app. The Wire app is hosted with a MaxDB database used to the store

data.

Any changes to be made to the API because of the app will be revisited later on.

4.12.1 Class Descriptions

To implement the criteria, the package com.sap.encryption is created and in it eight classes
are created and used, which are:

1. DataHolder

2. CryptoEncryptedContent

3. CryptoUtils

4. CryptoPGP

5. CryptoPublicKey

6. CryptoSignedContent

7. EncDencMessage

8. NetEncSignMessage

What follows is a UML Relationship diagram between the classes followed by a detailed

description of the classes. All classes are in the package com.sap.wire.encryption.

• DataHolder.java

The DataHolder class is used to hold public and static variables and data that is shared

between the classes. It is done to organize the data in a proper readable manner.

The variables it contains are the directory in which the key files are stored, the PGP

Private Key, the PGP Public key and a PGP Private Encryption Key. It has a method to

read a file and save it as a string, also another method which saves an input stream as a

string.

The DataHolder class also has methods to test the key function methods.

58

4.12. The Wire Android App

Figure 4.15: Wire Android Encryption Class Relationship

• CryptoUtils.java

This class is used to initialize or read keys if they are already present. It creates 2 files: a

private key file and a public key file with the file extension .asc. If the keys are not found

in the app files directory, it can generate a PGP key pair and write the keys which are

ASCII armored to files in the app files directory.

The private key will be written to file ’secret.asc’ and the Public key will be written to file

’public.asc’. If the keys exist, they are read and verified if their user IDs in the key match

the client’s hashId. The ElGamal key is used for encryption while the DSA key is used for

signing. There is also a method to delete the keys.

• CryptoPGP.java

The CryptoPGP class is taken and modified from

https://subversivebytes.wordpress.com/category/cryptography-2/. This class has the

technical implementation of signing and encrypting bytes based on the Spongy Castle

libraries. This class is where the actual implementation takes place. Strings and data

59

Chapter 4. Implementation

files are converted to a byte stream and then encrypted with the PGP public key ring

and the encrypted byte stream can be decrypted and verified with the PGP private key.

• CryptoPublicKey.java

This class is a wrapper class for PGPPublicKeys. The DSA key that can be used verify a

signature of the partner and ElGamal key can be used to encrypt data to the partner.

The CryptoPublicKey can either be initialized from a file, or from a String containing the

ASCIIarmored public key ring.

• CryptoSignedContent.java

This class is a wrapper class for processing raw encrypted messages. After the raw

message and public key have been set in constructor, it can decoded and verified

through its signature against the public key. This is used for comparing signature against

public key if the message has been signed by the owner of the public key. A valid

signature will result in the field valid of the class has been set to true.

• NetEncSignMessage.java

This class is a wrapper class for performing the main actions of encryption and a wrapper

for decryption. Sign and then encrypt content of raw data string with set keys. After

operation, the signed and encrypted content is available in encrypted data. It also has a

wrapper method for decrypting and verifying messages.

• EncDencMessage.java

This class is the re-usable wrapper class which has to be called for encryption and

decryption. The encryption method takes in a string as input, then using the NetEnc-

SignMessage class method, first the sender private signing key and passphrase is set.

The reciever encryption key and passphrase are set. Then the message is signed and

encrypted. For decryption, first the recipient private key and passphrase are set and the

sender’s signing key is obtained from the public key of the sender. Then the decryption

and verification method is called. If any error, then null is returned.

4.12.2 Connecting new functionality to the app’s existing working

Now the task is linking the new functionality to the app’s existing working framework.

60

4.12. The Wire Android App

First pre-requisite of the app is the key-pair. So the key initialization/read method is added to

the section when the app starts or resumes. This allows for the app to always have a key-pair

at the ready.

Figure 4.16: The app prefer-
ences menu

In the preferences menu, a set of key functions are added to

allow for working with the keys. The ability to view key finger-

prints, delete keys, test the basic working of the keys- this is

done by taking a fixed string, signing it, encrypting it with ones

own public key and decrypting it again with ones own private

key and verifying the signature to make sure the keys are work-

ing fine. Also options include ability to delete keys and upload

ones public key to the key repository.

Now for sending an encrypted message, the sender must have

the recipient’s public key. So a REST call is made. When a user

selects another user to chat with, the app makes a rest call to the key repository passing the

email ID of the recipient. The repository checks if the public key of the recipient is present

and it returns it. The key is returned in form of an ASCII string. The key returned is then taken

and read.

Figure 4.17: Toast notifica-
tions displayed by the app

From this string, the encryption key portion is extracted. This

will be used for encrypting the text. The key is stored in a tempo-

rary variable and not on the device. So every single time a chat

is opened the key is pulled from the database. When the key is

successfully returned from the repository a toast notification

is shown notifying the user if his chat will be encrypted or not. This keeps in line with the

existing functionality that even if a user doesn’t have a public key he can still have a chat with

a user.

Now is the process of adding the encryption method at the right point. The right point is just

before the REST request is made. There is a method in the program which basically encodes

the URL before making the REST call. Just before the URL is encoded, the message is encrypted

and signed.

61

Chapter 4. Implementation

The second step of the process is when a user receives a message. The app saves all messages

on the device’s database. The point where the decryption method is called just before the

message is stored in the local database of the android device. The message is first checked if it

is encrypted, if not, it is displayed as it is, or else it is decrypted using the private key saved on

the device. The decrypted message is then verified. If it is valid, then it is displayed. If there is

any error in the decryption then the message is not displayed.

Figure 4.18: App fingerprint
verification screen

Now since Wire is multi-platform, the messages can be accessed

on the web based app as well. But that is out of the scope of

this thesis. But if the messages are viewed on the web app, the

encrypted message is show as there is no way to decrypt it on

the browser. But this adds as a proof of concept that the server

cannot decrypt the end-users messages.

Now since the public key of the recipient is pulled from the key

repository when a recipient is selected, so the verification sec-

tion is added to the chat information display screen of the app.

If the key is received successfully then the QR code is displayed

and the option to send the code by email and also an option to

scan ones own public key on another device automatically.

4.13 Challenges Faced

During the development cycle of this product a number of challenges and roadblocks were

faced.

The challenges were more to do with limitations of the libraries used (Spongy Castle and Zxing)

and the understanding of the clear working of SAP Wire and the android app.

What follows is a brief description of the challenges faced and how they were overcome.

62

4.13. Challenges Faced

4.13.1 Message size in the SAP Wire Database

One of the earliest challenges faced was after a message is encrypted, it is sent to the server

and stored in the database.

In the "stock" version of SAP Wire there is a limit on the size of the message placed is 900

characters, so any message greater than 900 characters will be truncated to 900 characters.

Now this is an issue as an encrypted message can sometimes go over 900 characters and

because of this on the recipients device the entire message would not be received and hence

could not be decrypted.

For overcoming this flaw, a change was made to the SAP Wire application. Since the application

uses JPA for persistence on the database, it is designed to hold up to 2500 characters, so the

statement which used to truncate the message length is removed. This allows the entire

encrypted message to be saved in the database.

4.13.2 Running of Encryption/Decryption as a background task

The encryption takes place just before the REST call is made to send it to the Wire server and

the messages are decrypted when they are received from the server.

On android all network tasks have to be run in the background and cannot run in the UI thread

as they should not deadlock the UI. This design principle works and is the right way to go, but

however these do not take into account the spongy castle encryption and decryption methods

as the methods when run in background and at times, before one decryption method finishes

another method starts and there is a conflict and corruption. This leads to complications as

even a valid message won’t be decrypted successfully and thus not shown.

To overcome this flaw we make use of synchronized methods.[62]

“A synchronized method ensures that only one a single thread can execute

an object’s synchronized method at a given time. ”
63

Chapter 4. Implementation

This allows the threads to wait for resources to become available and also notify the thread

that makes resource available to notify other threads are on the queues for the resources.

With making both the encryption and decryption methods synchronized the problem was

overcome successfully.

4.13.3 Wire message PULL feature

The Wire app will pull messages from the database at regular intervals. When it does this,

it generally updates the entire chat room every single time. The app then updates all the

messages on the app.

This leads to a problem as messages sent to the user are encrypted with his public key so are

successfully decrypted, but the messages sent by the user are encrypted with the recipients

public key so they cannot be decrypted. This causes messages which are sent earlier to have a

problem.

To overcome this an additional check was made to just add only the new messages retrieved

into the database and leave the other messages as they were. This allows for a lesser load and

better efficiency also in the end result.

64

5 Testing

This chapter details the test procedures and results of using the Secure IM system. It

defines the test plan followed and the results obtained. The scope is defined. Also the product

end results are defined and specified in comparison with the requirements.

5.1 Testing Plan

Testing is one of the most important part of a software development life cycle. There are

different ways of approaching an application to test. The items listed below will focus on

identifying the scope of testing this application.

• Items / functionality to be tested

• Testing Strategies and approach to be followed

• Identifying the roles and responsibilities

• Test Deliverables

• Define the Entry n Exit Criteria for each phase of testing

• Test Environment-Hardware / Software

• List Risks and contingencies / mitigation plans to overcome

65

Chapter 5. Testing

5.1.1 Scope

The scope includes development and execution of the test suit consisting of the test scenarios

for Unit Testing, Integration Testing, and System Testing features. They are as follows:

• Unit Testing needs to be done at the development stage

• Test cases are based on Use case and Requirement specifications

• Test execution will be carried out mostly through manual approach

5.1.2 Test Approach

The different levels of testing that are carried out during the Test Execution are shown below.

Test Types Test Levels
(Risk Level)

Strategy / Methods Techniques for identification
of test cases

Unit Testing Low Black Box Testing Basic function testing.
UI / Usability Test-
ing

White White Box Testing Basic ease-of-use and function
testing.

Functionality Test-
ing

High Black Box Testing Test scenario shall be identified
and based on that test cases
shall be developed.

Usability Testing High Black Box Testing Specify the functional areas to
regression needed.

Regression Testing Low Black Box Testing Specify the functional areas for
which regression is needed.

Data Integrity High Database Testing This will validated by using a set
of database scenarios with set
of database scenario with set of
available or prepared data.

Table 5.1: Test Types

5.1.3 Entry Criteria

The following conditions should be met for test plan entry criteria:

• All functionality described in requirement specification has been implemented

• All unit and Integration Test cases should have been successfully executed

• Test environment includes test database with the master data operational

66

5.2. Test Environment

5.1.4 Exit Criteria

The testing phase can conclude when the following criteria has been met:

• All the test cases and Scenario including Unit, Integration, and System Testing should
be executed

• All open defects have been properly fixed and verified

• All the planned test scenarios / test cases are executed and these cover all the system
requirements functional, non functional, system / business requirements-functional
and non functional.

5.2 Test Environment

5.2.1 Test Hardware

The test devices used as mentioned before are the HTC One S, Samsung I9100 Galaxy S II and

the Google Nexus 7 (2012). The technical details of the devices are shown in the table that

follows.

HTC One S Samsung I9100
Galaxy S II

Google Nexus 7

Type Smart Phone Smart Phone Tablet
Android version 4.1.1 4.1.2 4.4

Chip Qualcomm Snap-
dragon S4 Plus
MSM8260A

Samsung Exynos
4210

NVIDIA Tegra 3
T30L

Processor Dual core, 1500
MHz, Krait

Dual core, 1200
MHz, ARM Cortex-
A9

Quad core, 1300
MHz, ARM Cortex-
A9

RAM 1024 MB 1024 MB 1024 MB
Internal Storage 16 GB 32 GB 8 GB

Display 540x960 pixels, 4.3
inches

480x800 pixels, 4.3
inches

1280x800 pixels,
7.0 inches

Pixel Density 256 ppi 218 ppi 216 ppi
Mobile Data HSDPA, 42 MBps;

HSUPA, 5.76 MBps,
EDGE, GPRS

HSDPA, 21 MBps;
HSUPA, 5.76 MBps,
EDGE, GPRS

HSDPA 21 Mbps,
HSUPA 5.76 MBps,
EDGE, GPRS

WiFi 802.11 b/g/n 802.11 a/b/g/n 802.11 b/g/n
Dimensions (in mm) 130.9 x 65 x 7.8 125.3 x 66.1 x 8.49 198.5 x 120 x 10.45

Weight 120 g 116 g 340 g

Table 5.2: Test Devices

67

Chapter 5. Testing

5.2.2 Test Software

For the purposes of unit testing and initial development, the applications are first tested on

the HANA Cloud local run-time. This allows to run the applications locally, but for testing the

app this is not enough as the mobile app works over the internet.

For this purpose, the Wire Key Repository and SAP Wire are hosted on the trial HANA Cloud

Platform and can be found on the following addresses as of October 9, 2014:

Wire Key Repository: https://personp1940720813trial.hanatrial.ondemand.com/

SAP Wire: https://wired060155trial.hanatrial.ondemand.com/

The android app on the other hand is first run on the Android emulator, included in the

Android SDK in harmony with the IDEA intelliJ IDE. However an emulator is good for checking

functionality but for tests on usability and real-time tests, the above hardware devices are

used.

5.2.3 Setting up the Test Environment

Setting up the server

As explained in section 5.2.2 the servers are setup on the HANA Cloud trial platform. The test

devices are connected to WLAN and mobile data.

Installing the app

The native app when compiled has the file format "apk". The file must be transferred to the

mobile device first and installed. This is done via USB. But since android does not allow to

installation of non market apps by default, the option has to be set to allow it for that. Once

this is done, three dummy trial accounts are created for testing.

68

5.3. Testing Methods Overview

5.3 Testing Methods Overview

5.3.1 Functional Testing

Here the basic functionality of the app is tested first one at a time individually then after
integrating it with other modules continuously and performing functionality tests. It includes:

• Functionality of each module will be covered based on requirements specifications

• Check for valid and invalid data

• Tests carried on mobile data as well as WLAN

• Checks to ensure interdependence of modules

5.3.2 Data and Database Testing

Here the data stored on the database is checked for consistency and validity. It includes:

• Data checks will be done on all types of database in scope

• Data checks like insert, update, retrieval will be done for all possible transactions

• Check whether database logging of data is proper or not

• Data validity check

5.3.3 UI / Usability Testing

This section deals with testing the basic "feel" and usability of the app from the end-users’
point of view. It includes:

• Tests include look and feel aspects

• Running the app in landscape as well as portrait

• Ease-of-use tests

5.3.4 Performance Testing

This section deals with testing the performance of the app during regular use. It includes:

• Check response time, transaction times and other time sensitive requirements to ensure
that it is consistent with the requirements

• Memory usage and CPU usage tests

69

Chapter 5. Testing

5.3.5 Failure and Recovery Testing

This section deals with testing the app’s functionality on failure of any service or the app itself
and their recovery mechanisms. It includes:

• Check for abnormal shutdowns for the application, system failures / network malfunc-
tions.

• Check for for data loss due to data corruption, system failures, and database failures.

5.3.6 Regression Testing

This section deals with regression tests which are done after bug or defect fixes. A regression
test will be performed after each phase to ensure that:

• No impact on existing functionality

• To ensure that there is an increase in the functionality and stability of the software

5.4 Test Results Overview

The tests were executed in process and the results were documented. Most tests were com-

pleted successfully and a few defects were encountered. The most troublesome defect was

that the App crashes when internet connection is too slow because it cannot connect to the

SAP SAML connection.

Figure 5.1: Wire crashed noti-
fication

This is a problem and defect with the API and little can be done

to fix it. In addition to this possibly, since the servers are hosted

on the HANA Cloud trial platform, the performance is not up

to par with the customer HANA Cloud platform. This is a minor

defect and considered out of scope of this development.

In addition to this, few defects were encountered and fixed. The

code was continuously updated and kept track of using GIT

repository. This distributed revision control and source code management (SCM) gives a clear

overview of the changes was made and a proper version tracking enabled to track changes

and affect bug fixes.

70

6 Conclusion

This chapter details the product developed and compares them with the requirements

detailed in chapter 3. A short comparison with control approaches used in previous works is

also done. The scope for future enhancements is also detailed and finally accomplishments of

this work are summarized in this chapter.

6.1 The Concept Proposed

Taking into account the security challenges faced by IM applications, a prototype was sug-

gested and this prototype overcame the challenges faced. The requirements were taken into

consideration and the concept was proved by implementing the same in a prototype built on

top SAP Wire. It offers the same level of performance and ease-of-use, in addition to this it

offers the feature set for providing privacy and another additional level of security.

This coupled with the way a key can be verified using a QR code basically offers the best-

practice methods to the corporate structure.

6.1.1 Requirements Re-visited

In section 3.2 a clear set of requirements was specified. In this section we compare the

requirements with the end results of the product developed.

The requirements are divided into 4 principal sections:

71

Chapter 6. Conclusion

Authentication

As specified, there should be a proper way of verifying that only a valid user is logged in and

using the service and there should not be any misuse.

The prototype offers authentication through the SAP SSO and also provides the method of

signing and verifying the signatures on all encrypted messages sent and received. In addition

to this, the feature to verify the public key fingerprints successfully covers the man-in-the-

middle attack and provides a trustworthy authentication service.

Confidentiality

As specified, the message should be unreadable by anyone other than the intended recipient.

A PGP based end-to-end encryption is implemented to the end product. This ensures, through

the PGP encryption method, that confidentiality is maintained. The encrypted messages

cannot be read by the server even if they were compelled to turn over the messages to a third

party.

Forward Secrecy

As specified, even if network traffic has been captured, the messages should not be decipher-

able even if the private key of the client is found.

The product developed has the ability that the user can change his key pair at regular intervals

or as per will, this prevents the attacker from deciphering any new messages. This allows

forward secrecy.

Repudiability

As specified, the ability that the receiver of a message is able to prove to a third party that the

sender really did send the message.

In the end product, this is achieved through digital signatures. This is an add-on to the

authentication feature and provides an additional level of security and trust.

72

6.2. Comparison with other IM Products

6.2 Comparison with other IM Products

Considering the popular messaging apps in the market today, the wire app developed with the

encryption package has a lead.

Because of use of PGP, the app has a clear advantage of Whatsapp, BBM, Skype and Lync. Also

because of the ability to verify the user as genuine by method of verifying public keys, the

app thus gets an advantage over Hoccer XO, MyEnigma and Surespot. Splitting up of the key

repository and the server, again put the app over the apps SIMSme, ChatSecure, TextSecure

and Telegram.

Threema on the other hand offer a feature set that is currently best in the business when

considering security in mobile IM apps. The product developed in course of this thesis offers

a feature-set that matches this development.

6.3 Future Enhancements

The app developed though rich in in its features can be enhanced in a number of ways. Some

of them include extending the functionality to include multimedia messages and location

messages. In addition to this functionality of encryption can be extended to group chats as

well.

Features can also include the improvement of the way user contacts are shared to make them

more "private" and also add a more stronger way of verifying fingerprints.

Also a method in which communication with the key server can be made more secure than

just using SSL may be a possible extension to this application.

In addition to this a further extension can be made to port the encryption features to the web

app, iOS and desktop versions of SAP Wire.

73

Chapter 6. Conclusion

6.4 Summary

The aim of this thesis was to develop a a concept based on best in practice methods that could

be implemented on "normal insecure" OM platform to allow usage if IM in a secure way in

which one doesn not trust the communication channel (e.g. HTTP/TCP traffic) or the server

routing messages but just the recipient.

This was achieved by first identifying the challenges and problems faced by Instant Messaging

applications and the current security technologies in them and accordingly find the best-

in-practice solutions. Using the research done, a concept was worked out which matched

the requirements of authenticity, confidentiality, non-repudiability, forward secrecy and

trustworthiness. It was designed to be simple for use and could be added on to existing

applications. The feasibility of this concept was then demonstrated by implementing it on top

if an existing corporate IM prototype- SAP Wire and thus presenting a working prototype.

Although there is nothing like 100% security, the concept was successfully developed based

on a proven best-practice and successfully implemented on to of a real IM shows that it is

possible to use the developed concept to put security and privacy on the next level.

74

A Appendix

A.1 Screenshots

Figure A.1: Wire Android App Login Screen

75

Appendix A. Appendix

Figure A.2: Wire App Chatrooms

Figure A.3: Wire Un-encrypted chat

76

A.1. Screenshots

Figure A.4: Wire Encrypted chat

Figure A.5: Wire Key files

77

Appendix A. Appendix

Figure A.6: Wire Key preferences and Verification options

Figure A.7: A wire generated PGP Public Key

78

A
.1.

Screen
sh

o
ts

Figure A.8: Wire Key Repository

79

A
p

p
en

d
ix

A
.

A
p

p
en

d
ix

Figure A.9: SAP Wire website

80

A
.1.

Screen
sh

o
ts

Figure A.10: Un-encrypted chat on Wire Web Application

81

A
p

p
en

d
ix

A
.

A
p

p
en

d
ix

Figure A.11: Encrypted chat on Wire Web Application

82

B Glossary

3G The third generation standards family for Mobile Communication.

AES Advanced Encryption Standard

API Application Programming Interface

AVD Android Virtual Device

CAST Carlisle Adams, Stafford Tavares encryption algorithm

CCA Chosen-Ciphertext Attacks

CPA Chosen-Plaintext Attacks

DES Data Encryption Standard

DH Diffie-Hellman

DoS Denial of Service

ERP Enterprise Resource Planning

FIPS Federal Information Processing Standards

IDE Integrated Development Environment

83

Appendix B. Glossary

J2SE Java Standard Edition

J2EE Java Enterprise Edition

JDBC Java Database Connectivity

JSON JavaScript Object Notation

HANA High-Performance Analytic Appliance

HMAC Hash-based message authentication code

IM Instant Messaging

KPA Known-Plaintext Attacks

MAC Message authentication code

MITM Man-in-the-middle

NaCl Networking and Cryptography library ("Salt")

OHA Open Handset Alliance

OS Operating System

PaaS Platform as a Service

PGP Pretty Good Privacy

QR Quick Response

RC4 Rivest Cipher 4 or Ron’s Code 4

RTP Real-time Transport Protocol

SaaS Software as a Service

SAML Security Assertion Markup Language

SIP Session Initiation Protocol

84

SMS Short Message Service

SRTP Secure Real-time Transport Protocol

SSL Secure Socket Layer

SSO Single Sign On

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

85

Bibliography

[1] Conder S. and Darcey L., Android Wireless Application Development, 2009. Addison-

Wesley, ISBN 978-0-321-62709-4.

[2] Cellular News: SMS will remain more popular than mobile messaging apps over next five

years, 29th May 2012

[3] Savage, Charlie. N.S.A. Said to Search Content of Messages to and From U.S. (8 August

2013).

[4] Chang-Ji Wang, Wen-Long Lin and Hai-Tao Lin, Design of An Instant Messaging Sys-

tem Using Identity Based Cryptosystems, Fourth International Conference on Emerging

Intelligent Data and Web Technologies, 2013

[5] Pidgin (http://www.pidgin.im/)

[6] The Android SDK- http://developer.android.com/sdk/

[7] SAP HANA Cloud Portal- http://hana.ondemand.com

[8] Whatsapp- www.whatsapp.com

[9] M. Fabri, D. Moore and D. Hobbs, Empathy and Enjoyment in Instant Messaging, IEEE

International Workshop on Human-Computer Interaction, Sept. 2005

[10] Radicati, Sara, Instant Messaging Market, 2013-2017 (23 September 2013)

[11] Jaakko Kangasharju and Marko Saaresto, Instant Messaging and Presence: Research and

Challenges, Seminar on instant messaging and presence architectures in the internet.

87

http://www.cellular-news.com/story/54641.php
http://www.nytimes.com/2013/08/08/us/broader-sifting-of-data-abroad-is-seen-by-nsa.html
http://developer.android.com/sdk/index.html
http://hana.ondemand.com
http://www.whatsapp.com

Bibliography

[12] Juniper Research, Mobile Messaging Markets (19 February 2014)

[13] Nikita Borisov, Ian Goldberg and Eric Brewer Off-the-record Communication, or why not

to use PGP, Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society

(WPES ’04), Washington DC, USA, 2004. DOI 10.1145/1029179.1029200.

[14] Whisper Systems- www.whispersystems.org

[15] Marlinspike, Moxie. The Difficulty Of Private Contact Discovery (03 January 2014).

[16] ICT facts and figures, The International Telecommunication Union (May 2014)

[17] Skogberg, Benny. Android Application Development- A guide for the Intermediate Devel-

oper (6 September 2010).

[18] Android version history-Wikipedia

[19] Twister- www.twister.net.co

[20] PingPal- www.pingpal.io

[21] Snapchat- www.snapchat.com

[22] Why I created PGP- Philip Zimmermann (www.philzimmermann.com/EN/essays/WhyIWrotePGP.html)

[23] Introduction to Cryptography, PGP 6.5.1 documentation, 1990-1999 Network Associates,

Inc.

[24] SAP Wire (www.sapwire.hana.ondemand.com)

[25] Instant Messenger Security (http://www.technicalinfo.net/papers/IMSecurity.html)

[26] Piercing Through WhatsApp’s Encryption (https://blog.thijsalkema.de/blog/2013/10/08/piercing-

through-whatsapp-s-encryption/)

[27] Communication breakdown (http://apps.washingtonpost.com/g/page/world/communication-

breakdown/1153/)

[28] Nielsen/NetRatings, A report on the instant messaging services, 2002.

88

https://whispersystems.org
https://whispersystems.org/blog/contact-discovery/
https://en.wikipedia.org/wiki/Android_version_history
http://www.twister.net.co
https://pingpal.io
https://www.snapchat.com
https://www.philzimmermann.com/EN/essays/WhyIWrotePGP.html
https://sapwire.hana.ondemand.com
http://www.technicalinfo.net/papers/IMSecurity.html
https://blog.thijsalkema.de/blog/2013/10/08/piercing-through-whatsapp-s-encryption/
https://blog.thijsalkema.de/blog/2013/10/08/piercing-through-whatsapp-s-encryption/
http://apps.washingtonpost.com/g/page/world/communication-breakdown/1153/
http://apps.washingtonpost.com/g/page/world/communication-breakdown/1153/

Bibliography

[29] WhatsApp encryption flaw revealed, POC code published (http://www.net-

security.org/secworld.php?id=15745)

[30] Telegram (http://www.telegram.org)

[31] Telegram, AKA “Stand back, we have Math PhDs!”

(http://unhandledexpression.com/2013/12/17/telegram-stand-back-we-know-

maths/)

[32] Hiroaki Kikuchi, Minako Tada, Shohachiro Nakanishi. Secure Instant Messaging Protocol

Preserving Confidentiality against Administrator, 18th International Conference on Ad-

vanced Information Networking and Applications, 2004. DOI 10.1109/AINA.2004.1283749

[33] Xue Sun, Zhenjun Du, Rong Chen. A Secure Cross-platform Mobile IM System for Enter-

prise Applications, International Conference on Uncertainty Reasoning and Knowledge

Engineering, 2011

[34] Tsai-Yeh Tung, Laurent Lin, D. T. Lee. Pandora Messaging: An Enhanced Self-Message-

Destructing Secure Instant Messaging Architecture for Mobile Devices, 26th International

Conference on Advanced Information Networking and Applications Workshops, 2012

[35] WhatsApp-Alternativen fürs Business, IX Magazin für Professionelle Informationstechnik

pages[76-83], July 2014

[36] HoccerXo (http://hoccer.com/)

[37] D. Park, C. Boyd and S.-J. Moon. Forward secrecy and its application to future mobile

communications security. In Proceedings of the 3rd International Workshop on Practice

and Theory in Public Key Cryptography (PKC 2000), volume 1751 of LNCS, pages 433–445.

Springer-Verlag, Jan. 2000.

[38] P. Henry and H. Luo. Off-the-record email system. In Proceedings of the IEEE INFOCOM,

pages 869–877, Apr. 2001.

[39] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message authentication,

Feb. 1997. RFC 2104, Status: Informational. (http://www.ietf.org/rfc/rfc2104.txt)

[40] BlackBerry Messenger (http://us.blackberry.com/bbm/bbm-chat.html)

89

http://www.net-security.org/secworld.php?id=15745
http://www.net-security.org/secworld.php?id=15745
http://www.telegram.org
http://hoccer.com/
http://us.blackberry.com/bbm/bbm-chat.html

Bibliography

[41] BBM Protected (http://us.blackberry.com/business/products-services/e-bbm.html)

[42] Security Note- BBM Protected, 16 Jun. 2014.

[43] Security Requirements For Cryptographic Modules, Federal Information Processing

Standards Publication, May 25, 2001.

[44] MTProto (http://core.telegram.org/mtproto)

[45] ChatSecure (http://www.chatsecure.org)

[46] Feng Cao and Malik, S., Security analysis and solutions for deploying IP telephony in the

critical infrastructure, Workshop of the 1st International Conference on Security and

Privacy for Emerging Areas in Communication Networks, 2005.

[47] McNelly, Brian. VoIP Security Vulnerabilities. Boulder, December 6, 2007.

[48] Microsoft Lync (http://products.office.com/lync/)

[49] Skype (http://www.skype.com/)

[50] myENIGMA: Whitepaper, Qnective AG, 2013

[51] Surespot-encrypted messenger (https://www.surespot.me/)

[52] Threema- Seriously secure mobile messaging (https://threema.ch/)

[53] SIMSme (http://www.sims.me/)

[54] Java Persistence API (http://www.oracle.com/technetwork/java/javaee/tech/persistence-

jsp-140049.html)

[55] SAP UI5 (https://sapui5.hana.ondemand.com/)

[56] SAML 2.0 and SAP GUI Single Sign-On in one and the same scenario, Donka Dimitrova,

SAP, June 2, 2014

[57] Non-repudiation (http://en.wikipedia.org/wiki/Non-repudiation)

[58] Bouncy Castle (https://www.bouncycastle.org/)

90

Bibliography

[59] Spongy Castle by rtyley (http://rtyley.github.io/spongycastle/)

[60] Official ZXing ("Zebra Crossing") Project Home (https://github.com/zxing/zxing)

[61] Google Play: Barcode Scanner (https://play.google.com/store/apps/details?

id=com.google.zxing.client.android)

[62] The Java™ Tutorials- Synchronized Methods (http://docs.oracle.com/javase/tutorial/

essential/concurrency/syncmeth.html)

[63] Orwell, George. 1984 by George Orwell, Ed. Erich Fromm. New York: Harcourt, 1949.

91

	Preface
	Abstract
	Declaration
	List of figures
	List of tables
	Introduction
	Background
	Motivation
	Objective
	Approach Methodology
	Reading directions

	State of the Art
	Working of Mobile IM Applications
	Threats to Instant Messaging
	General Threats
	Attacks

	Enterprise Instant Messaging (EIM)
	Related work in Secure Instant Messaging
	Security in current Instant Messaging Applications

	Concept
	Initial Requirements
	Detailed Requirements
	Confidentiality
	Authentication
	Forward Secrecy
	Repudiability
	Trustworthiness

	Secure IM Concept

	Implementation
	Application of concept
	Instant Messaging at SAP SE
	Technology
	The SAP HANA Cloud Platform
	The Android Operating System

	SAP Wire
	Features
	Functionality
	Data Model
	Architecture
	Wire's Web Service
	The Web Based App
	The Wire Android App and iOS App

	Features to be added
	Assumptions
	Target Audience

	Use Cases
	Actors
	Use Case Models

	Programming languages and tools
	PGP Encryption and Decryption
	SAP Wire Key Repository
	Person
	PersonDAO
	PersistenceWithJDBCServlet

	New Functionality
	Basic Cryptography Prototype
	The Wire Android App
	Class Descriptions
	Connecting new functionality to the app's existing working

	Challenges Faced
	Message size in the SAP Wire Database
	Running of Encryption/Decryption as a background task
	Wire message PULL feature

	Testing
	Testing Plan
	Scope
	Test Approach
	Entry Criteria
	Exit Criteria

	Test Environment
	Test Hardware
	Test Software
	Setting up the Test Environment

	Testing Methods Overview
	Functional Testing
	Data and Database Testing
	UI / Usability Testing
	Performance Testing
	Failure and Recovery Testing
	Regression Testing

	Test Results Overview

	Conclusion
	The Concept Proposed
	Requirements Re-visited

	Comparison with other IM Products
	Future Enhancements
	Summary

	Appendix
	Screenshots

	Glossary
	Bibliography

